9 resultados para Quantization of the scalar field and particle Creation

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is in two parts. In the first section, the operator structure of the singular terms in the equal-time commutator of space and time components of the electromagnetic current is investigated in perturbation theory by establishing a connection with Feynman diagrams. It is made very plausible that the singular term is a c number. Some remarks are made about the same problem in the electrodynamics of a spinless particle.

In the second part, an SU(3) symmetric multi-channel calculation of the electromagnetic mass differences in the pseudoscalar meson and baryon octets is carried out with an attempt to include some of the physics of the crossed (pair annihilation) channel along the lines of the recent work by Ball and Zachariasen. The importance of the tensor meson Regge trajectories is emphasized. The agreement with experiment is poor for the isospin one mass differences, but excellent for those with isospin two.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new phenomena have been observed in Mössbauer spectra: a temperature-dependent shift of the center of gravity of the spectrum, and an asymmetric broadening of the spectrum peaks. Both phenomena were observed in thulium salts. In the temperature range 1˚K ≤ T ≤ 5˚K the observed shift has an approximate inverse temperature dependence. We explain this on the basis of a Van Vleck type of interaction between the magnetic moment of two nearly degenerate electronic levels and the magnetic moment of the nucleus. From the size of the shift we are able to deduce an “effective magnetic field” H = (6.0 ± 0.1) x 106 Gauss, which is proportional to ‹r-3M‹G|J|E› where ‹r-3M is an effective magnetic radial integral for the 4f electrons and |G› and |E› are the lowest 4f electronic states in Tm Cl3·6H2O. From the temperature dependence of the shift we have derived a preliminary value of 1 cm-1 for the splitting of these two states. The observed asymmetric line broadening is independent of temperature in the range 1˚K ≤ T ≤ 5˚K, but is dependent on the concentration of thulium ions in the crystal. We explain this broadening on the basis of spin-spin interactions between thulium ions. From size and concentration dependence of the broadening we are able to deduce a spin-spin relaxation time for Tm Cl3·6H2O of the order of 10-11 sec.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1.7- and 2.43-MeV levels in 9Be were populated with the reaction 11B(d, α)9Be* by bombarding thin boron on carbon foils with 1.7-MeV deuterons. The alpha particles were analyzed in energy with a surface-barrier counter set at the unique kinematically determined angle and the recoiling 9Be nuclei at 90o were analyzed in rigidity with a magnetic spectrometer, in energy by a surface-barrier counter at the spectrometer focus, and in velocity by the time delay between an alpha and a 9Be count. When a pulse from the spectrometer counter was in the appropriate delayed coincidence with a pulse from the alpha counter, the two pulses were recorded in a two-dimensional pulse height analyzer. Most of the 9Be* decay by particle breakup. Only those that gamma decay are detected by the spectrometer counter. Thus the experiment provides a direct measurement of Γrad/Γ. Analysis of 384 observed events gives Γrad/Γ = (1.16 ± 0.14) X 10-4 for the 2.43-MeV level. Combining this ratio with the value of Γrad = 0.122 ± 0.015 eV found from inelastic electron scattering gives Γ = (1.05 ± 0.18) keV. For the 1.7-MeV level, an upper limit, Γrad/Γ ≤ 2.4 = 10-5, was determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel’dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample.

The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales (less than 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout electronics contribute significant 1/f and drift-type noise at shorter timescales. The atmospheric noise is removed by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and electronic noise removal are described. After removal, we find good agreement between the observed residual noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The core-level energy shifts observed using X-ray photoelectron spectroscopy (XPS) have been used to determine the band bending at Si(111) surfaces terminated with Si-Br, Si-H, and Si-CH3 groups, respectively. The surface termination influenced the band bending, with the Si 2p3/2 binding energy affected more by the surface chemistry than by the dopant type. The highest binding energies were measured on Si(111)-Br (whose Fermi level was positioned near the conduction band at the surface), followed by Si(111)-H, followed by Si(111)-CH3 (whose Fermi level was positioned near mid-gap at the surface). Si(111)-CH3 surfaces exposed to Br2(g) yielded the lowest binding energies, with the Fermi level positioned between mid-gap and the valence band. The Fermi level position of Br2(g)-exposed Si(111)-CH3 was consistent with the presence of negatively charged bromine-containing ions on such surfaces. The binding energies of all of the species detected on the surface (C, O, Br) shifted with the band bending, illustrating the importance of isolating the effects of band bending when measuring chemical shifts on semiconductor surfaces. The influence of band bending was confirmed by surface photovoltage (SPV) measurements, which showed that the core levels shifted toward their flat-band values upon illumination. Where applicable, the contribution from the X-ray source to the SPV was isolated and quantified. Work functions were measured by ultraviolet photoelectron spectroscopy (UPS), allowing for calculation of the sign and magnitude of the surface dipole in such systems. The values of the surface dipoles were in good agreement with previous measurements as well as with electronegativity considerations. The binding energies of the adventitious carbon signals were affected by band bending as well as by the surface dipole. A model of band bending in which charged surface states are located exterior to the surface dipole is consistent with the XPS and UPS behavior of the chemically functionalized Si(111) surfaces investigated herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The olfactory bulb of mammals aids in the discrimination of odors. A mathematical model based on the bulbar anatomy and electrophysiology is described. Simulations of the highly non-linear model produce a 35-60 Hz modulated activity, which is coherent across the bulb. The decision states (for the odor information) in this system can be thought of as stable cycles, rather than as point stable states typical of simpler neuro-computing models. Analysis shows that a group of coupled non-linear oscillators are responsible for the oscillatory activities. The output oscillation pattern of the bulb is determined by the odor input. The model provides a framework in which to understand the transformation between odor input and bulbar output to the olfactory cortex. This model can also be extended to other brain areas such as the hippocampus, thalamus, and neocortex, which show oscillatory neural activities. There is significant correspondence between the model behavior and observed electrophysiology.

It has also been suggested that the olfactory bulb, the first processing center after the sensory cells in the olfactory pathway, plays a role in olfactory adaptation, odor sensitivity enhancement by motivation, and other olfactory psychophysical phenomena. The input from the higher olfactory centers to the inhibitory cells in the bulb are shown to be able to modulate the response, and thus the sensitivity, of the bulb to odor input. It follows that the bulb can decrease its sensitivity to a pre-existing and detected odor (adaptation) while remaining sensitive to new odors, or can increase its sensitivity to discover interesting new odors. Other olfactory psychophysical phenomena such as cross-adaptation are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A summary of previous research is presented that indicates that the purpose of a blue copper protein's fold and hydrogen bond network, aka, the rack effect, enforce a copper(II) geometry around the copper(I) ion in the metal site. In several blue copper proteins, the C-terminal histidine ligand becomes protonated and detaches from the copper in the reduced forms. Mutants of amicyanin from Paracoccus denitrificans were made to alter the hydrogen bond network and quantify the rack effect by pKa shifts.

The pKa's of mutant amicyanins have been measured by pH-dependent electrochemistry. P94F and P94A mutations loosen the Northern loop, allowing the reduced copper to adopt a relaxed conformation: the ability to relax drives the reduction potentials up. The measured potentials are 265 (wild type), 380 (P94A), and 415 (P94F) mV vs. NHE. The measured pKa's are 7.0 (wild type), 6.3 (P94A), and 5.0 (P94F). The additional hydrogen bond to the thiolate in the mutants is indicated by a red-shift in the blue copper absorption and an increase in the parallel hyperfine splitting in the EPR spectrum. This hydrogen bond is invoked as the cause for the increased stability of the C-terminal imidazole.

Melting curves give a measure of the thermal stability of the protein. A thermodynamic intermediate with pH-dependent reversibility is revealed. Comparisons with the electrochemistry and apoamicyanin suggest that the intermediate involves the region of the protein near the metal site. This region is destabilized in the P94F mutant; coupled with the evidence that the imidazole is stabilized under the same conditions confirms an original concept of the rack effect: a high energy configuration is stabilized at a cost to the rest of the protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of two separate parts. Part I (Chapter 1) is concerned with seismotectonics of the Middle America subduction zone. In this chapter, stress distribution and Benioff zone geometry are investigated along almost 2000 km of this subduction zone, from the Rivera Fracture Zone in the north to Guatemala in the south. Particular emphasis is placed on the effects on stress distribution of two aseismic ridges, the Tehuantepec Ridge and the Orozco Fracture Zone, which subduct at seismic gaps. Stress distribution is determined by studying seismicity distribution, and by analysis of 190 focal mechanisms, both new and previously published, which are collected here. In addition, two recent large earthquakes that have occurred near the Tehuantepec Ridge and the Orozco Fracture Zone are discussed in more detail. A consistent stress release pattern is found along most of the Middle America subduction zone: thrust events at shallow depths, followed down-dip by an area of low seismic activity, followed by a zone of normal events at over 175 km from the trench and 60 km depth. The zone of low activity is interpreted as showing decoupling of the plates, and the zone of normal activity as showing the breakup of the descending plate. The portion of subducted lithosphere containing the Orozco Fracture Zone does not differ significantly, in Benioff zone geometry or in stress distribution, from adjoining segments. The Playa Azul earthquake of October 25, 1981, Ms=7.3, occurred in this area. Body and surface wave analysis of this event shows a simple source with a shallow thrust mechanism and gives Mo=1.3x1027 dyne-cm. A stress drop of about 45 bars is calculated; this is slightly higher than that of other thrust events in this subduction zone. In the Tehuantepec Ridge area, only minor differences in stress distribution are seen relative to adjoining segments. For both ridges, the only major difference from adjoining areas is the infrequency or lack of occurrence of large interplate thrust events.

Part II involves upper mantle P wave structure studies, for the Canadian shield and eastern North America. In Chapter 2, the P wave structure of the Canadian shield is determined through forward waveform modeling of the phases Pnl, P, and PP. Effects of lateral heterogeneity are kept to a minimum by using earthquakes just outside the shield as sources, with propagation paths largely within the shield. Previous mantle structure studies have used recordings of P waves in the upper mantle triplication range of 15-30°; however, the lack of large earthquakes in the shield region makes compilation of a complete P wave dataset difficult. By using the phase PP, which undergoes triplications at 30-60°, much more information becomes available. The WKBJ technique is used to calculate synthetic seismograms for PP, and these records are modeled almost as well as the P. A new velocity model, designated S25, is proposed for the Canadian shield. This model contains a thick, high-Q, high-velocity lid to 165 km and a deep low-velocity zone. These features combine to produce seismograms that are markedly different from those generated by other shield structure models. The upper mantle discontinuities in S25 are placed at 405 and 660 km, with a simple linear gradient in velocity between them. Details of the shape of the discontinuities are not well constrained. Below 405 km, this model is not very different from many proposed P wave models for both shield and tectonic regions.

Chapter 3 looks in more detail at recordings of Pnl in eastern North America. First, seismograms from four eastern North American earthquakes are analyzed, and seismic moments for the events are calculated. These earthquakes are important in that they are among the largest to have occurred in eastern North America in the last thirty years, yet in some cases were not large enough to produce many good long-period teleseismic records. A simple layer-over-a-halfspace model is used for the initial modeling, and is found to provide an excellent fit for many features of the observed waveforms. The effects on Pnl of varying lid structure are then investigated. A thick lid with a positive gradient in velocity, such as that proposed for the Canadian shield in Chapter 2, will have a pronounced effect on the waveforms, beginning at distances of 800 or 900 km. Pnl records from the same eastern North American events are recalculated for several lid structure models, to survey what kinds of variations might be seen. For several records it is possible to see likely effects of lid structure in the data. However, the dataset is too sparse to make any general observations about variations in lid structure. This type of modeling is expected to be important in the future, as the analysis is extended to more recent eastern North American events, and as broadband instruments make more high-quality regional recordings available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resolution of the so-called thermodynamic paradox is presented in this paper. It is shown, in direct contradiction to the results of several previously published papers, that the cutoff modes (evanescent modes having complex propagation constants) can carry power in a waveguide containing ferrite. The errors in all previous “proofs” which purport to show that the cutoff modes cannot carry power are uncovered. The boundary value problem underlying the paradox is studied in detail; it is shown that, although the solution is somewhat complicated, there is nothing paradoxical about it.

The general problem of electromagnetic wave propagation through rectangular guides filled inhomogeneously in cross-section with transversely magnetized ferrite is also studied. Application of the standard waveguide techniques reduces the TM part to the well-known self-adjoint Sturm Liouville eigenvalue equation. The TE part, however, leads in general to a non-self-adjoint eigenvalue equation. This equation and the associated expansion problem are studied in detail. Expansion coefficients and actual fields are determined for a particular problem.