13 resultados para Qilian Mountains

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed oxygen, hydrogen and carbon isotope studies have been carried out on igneous and metamorphic rocks of the Stony Mountain complex, Colorado, and the Isle of Skye, Scotland, in order to better understand the problems of hydrothermal meteoric water-rock interaction.

The Tertiary Stony Mountain stock (~1.3 km in diameter), is composed of an outer diorite, a main mass of biotite gabbro, and an inner diorite. The entire complex and most of the surrounding country rocks have experienced various degrees of 18O depletion (up to 10 per mil) due to interaction with heated meteoric waters. The inner diorite apparently formed from a low-18O magma with δ18O ≃ +2.5, but most of the isotopic effects are a result of exchange between H2O and solidified igneous rocks. The low-18O inner diorite magma was probably produced by massive assimilation and/or melting of hydrothermally altered country rocks. The δ18O values of the rocks generally increase with increasing grain size, except that quartz typically has δ18O = +6 to +8, and is more resistant to hydrothermal exchange than any other mineral studied. Based on atom % oxygen, the outer diorites, gabbros, and volcanic rocks exhibit integrated water/rock ratios of 0.3 ± 0.2, 0.15 ± 0.1, and 0.2 ± 0.1, respectively. Locally, water/rock ratios attain values greater than 1.0. Hydrogen isotopic analyses of sericites, chlorites, biotites, and amphiboles range from -117 to -150. δD in biotites varies inversely with Fe/Fe+Mg, as predicted by Suzuoki and Epstein (1974), and positively with elevation, over a range of 600 m. The calculated δD of the mid-to-late-Tertiary meteoric waters is about -100. Carbonate δ13C values average -5.5 (PDB), within the generally accepted range for deep-seated carbon.

Almost all the rocks within 4 km of the central Tertiary intrusive complex of Skye are depleted in 18O. Whole-rock δ18O values of basalts (-7. 1 to +8.4), Mesozoic shales (-0.6 to + 12.4), and Precambrian sandstones (-6.2 to + 10.8) systematically decrease inward towards the center of the complex. The Cuillin gabbro may have formed from a 18O-depleted magma (depleted by about 2 per mil); δ18O of plagioclase (-7.1 to + 2.5) and pyroxene (-0.5 to + 3.2) decrease outward toward the margins of the pluton. The Red Hills epigranite plutons have δ18O quartz (-2.7 to + 7.6) and feldspar (-6.7 to + 6.0) that suggest about 3/4 of the exchange took place at subsolidus temperatures; profound disequilibrium quartz-feldspar fractionations (up to 12) are characteristic. The early epigranites were intruded as low-18O melts (depletions of up to 3 per mil) with δ18O of the primary, igneous quartz decreasing progressively with time. The Southern Porphyritic Epigranite was apparently intruded as a low-18O magma with δ18O ≃ -2.6. A good correlation exists between grain size and δ18O for the unique, high-18O Beinn an Dubhaich granite which intrudes limestone having a δ18O range of +0.5 to +20.8, and δ13C of -4.9 to -1.0. The δD values of sericites (-104 to -107), and amphiboles, chlorites, and biotites (-105 to -128) from the igneous rocks , indicate that Eocene surface waters at Skye had δD ≃ -90. The average water/rock ratio for the Skye hydrothermal system is approximately one; at least 2000 km3 of heated meteoric waters were cycled through these rocks.

Thus these detailed isotopic studies of two widely separated areas indicate that (1) 18O-depleted magmas are commonly produced in volcanic terranes invaded by epizonal intrusions; (2) most of the 18O-depletion in such areas are a result of subsolidus exchange (particularly of feldspars); however correlation of δ18O with grain size is generally preserved only for systems that have undergone relatively minor meteoric hydrothermal exchange; (3) feldspar and calcite are the minerals mos t susceptible to oxygen isotopic exchange, whereas quartz is very resistant to oxygen isotope exchange; biotite, magnetite, and pyroxene have intermediate susceptibilities; and (4) basaltic country rocks are much more permeable to the hydrothermal convective system than shale, sandstone, or the crystalline basement complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite stock of alkaline gabbro and syenite is intrusive into limestone of the Del Carmen, Sue Peake and Santa Elena Formations at the northwest end of the Christmas Mountains. There is abundant evidence of solution of wallrock by magma but nowhere are gabbro and limestone in direct contact. The sequence of lithologies developed across the intrusive contact and across xenoliths is gabbro, pyroxenite, calc-silicate skarn, marble. Pyroxenite is made up of euhedral crystals of titanaugite and sphene in a leucocratic matrix of nepheline, Wollastonite and alkali feldspar. The uneven modal distribution of phases in pyroxenite and the occurrence' of nepheline syenite dikes, intrusive into pyroxenite and skarn, suggest that pyroxenite represents an accumulation of clinopyroxene "cemented" together by late-solidifying residual magma of nepheline syenite composition. Assimilation of limestone by gabbroic magma involves reactions between calcite and magma and/or crystals in equilibrium with magma and crystallization of phases in which the magma is saturated, to supply energy for the solution reaction. Gabbroic magma was saturated with plagioclase and clinopyroxene at the time of emplacement. The textural and mineralogic features of pyroxenite can be produced by the reaction 2( 1-X) CALCITE + ANXABl-X = (1-X) NEPHELINE+ 2(1-X) WOLLASTONITE+ X ANORTHITE+ 2(1-X) CO2. Plagioclase in pyroxenite has corroded margins and is rimmed by nepheline, suggestive of resorption by magma. Anorthite and wollastonite enter solid solution in titanaugite. For each mole of calcite dissolved, approximately one mole of clinopyroxene was crystallized. Thus the amount of limestone that may be assimilated is limited by the concentration of potential clinopyroxene in the magma. Wollastonite appears as a phase when magma has been depleted in iron and magnesium by crystallization of titanaugite. The predominance of mafic and ultramafic compositions among contaminated rocks and their restriction to a narrow zone along the intrusive contact provides little evidence for the generation of a significant volume of desilicated magma as a result of limestone assimilation.

Within 60 m of the intrusive contact with the gabbro, nodular chert in the Santa Elena Limestone reacted with the enveloping marble to form spherical nodules of high-temperature calc-silicate minerals. The phases wollastonite, rankinite, spurrite, tilleyite and calcite, form a series of sharply-bounded, concentric monomineralic and two-phase shells which record a step-wise decrease in silica content from the core of a nodule to its rim. Mineral zones in the nodules vary 'with distance from the gabbro as follows:

0-5 m CALCITE + SPURRITE + RANKINITE + WOLLASTONITE
5-16 m CALCITE + TILLEYITE ± SPURRITE + RANKINITE + WOLLASTONITE
16-31 m CALCITE + TILLEYITE + WOLLASTONITE
31-60 m CALCITE + WOLLASTONITE
60-plus CALCITE + QUARTZ

The mineral of a one-phase zone is compatible with the phases bounding it on either side but these phases are incompatible in the same volume of P-T-XCO2.

Growth of a monomineralio zone is initiated by reaction between minerals of adjacent one-phase zones which become unstable with rising temperature to form a thin layer of a new single phase that separates the reactants and is compatible with both of them. Because the mineral of the new zone is in equilibrium with the phases at both of its contacts, gradients in the chemical potentials of the exchangeable components are established across it. Although zone boundaries mark discontinuities in the gradients of bulk composition, two-phase equilibria at the contacts demonstrate that the chemical potentials are continuous. Hence, Ca, Si and CO2 were redistributed in the growing nodule by diffusion. A monomineralic zone grows at the expense of an adjacent zone by reaction between diffusing components and the mineral of the adjacent zone. Equilibria between two phases at zone boundaries buffers the chemical potentials of the diffusing species. Thus, within a monomineralic zone, the chemical potentials of the diffusing components are controlled external to the local assemblage by the two-phase equilibria at the zone boundaries.

Mineralogically zoned calc-silicate skarn occurs as a narrow band that separates pyroxenite and marble along the intrusive contact and forms a rim on marble xenoliths in gabbro. Skarn consists of melilite or idocrase pseudomorphs of melili te, one or two . stoichiometric calcsilicate phases and accessory Ti-Zr garnet, perovskite and magnetite. The sequence of mineral zones from pyroxenite to marble, defined by a characteristic calc-silicate, is wollastonite, rankinite, spurrite, calcite. Mineral assemblages of adjacent skarn zones are compatible and the set of zones in a skarn band defines a facies type, indicating that the different mineral assemblages represent different bulk compositions recrystallized under identical conditions. The number of phases in each zone is less than the number that might be expected to result from metamorphism of a general bulk composition under conditions of equilibrium, trivariant in P, T and uCO2. The "special" bulk composition of each zone is controlled by reaction between phases of the zones bounding it on either side. The continuity of the gradients of composition of melilite and garnet solid solutions across the skarn is consistent with the local equilibrium hypothesis and verifies that diffusion was the mechanism of mass transport. The formula proportions of Ti and Zr in garnet from skarn vary antithetically with that of Si Which systematically decreases from pyroxenite to marble. The chemical potential of Si in each skarn zone was controlled by the coexisting stoichiometric calc-silicate phases in the assemblage. Thus the formula proportion of Si in garnet is a direct measure of the chemical potential of Si from point to point in skarn. Reaction between gabbroic magma saturated with plagioclase and clinopyroxene produced nepheline pyroxenite and melilite-wollastonite skarn. The calcsilicate zones result from reaction between calcite and wollastonite to form spurrite and rankinite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An area of about 25 square miles in the western part of the San Gabriel Mountains was mapped on a scale of 1000 feet to the inch. Special attention was given to the structural geology, particularly the relations between the different systems of faults, of which the San Gabriel fault system and the Sierra Madre fault system are the most important ones. The present distribution and relations of the rocks suggests that the southern block has tilted northward against a more stable mass of old rocks which was raised up during a Pliocene or post-Pliocene orogeny. It is suggested that this northward tilting of the block resulted in the group of thrust faults which comprise the Sierra Madre fault system. It is show that this hypothesis fits the present distribution of the rocks and occupies a logical place in the geologic history of the region as well or better than any other hypothesis previously offered to explain the geology of the region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Daya Bay Reactor Antineutrino Experiment observed the disappearance of reactor $\bar{\nu}_e$ from six $2.9~GW_{th}$ reactor cores in Daya Bay, China. The Experiment consists of six functionally identical $\bar{\nu}_e$ detectors, which detect $\bar{\nu}_e$ by inverse beta decay using a total of about 120 metric tons of Gd-loaded liquid scintillator as the target volume. These $\bar{\nu}_e$ detectors were installed in three underground experimental halls, two near halls and one far hall, under the mountains near Daya Bay, with overburdens of 250 m.w.e, 265 m.w.e and 860 m.w.e. and flux-weighted baselines of 470 m, 576 m and 1648 m. A total of 90179 $\bar{\nu}_e$ candidates were observed in the six detectors over a period of 55 days, 57549 at the Daya Bay near site, 22169 at the Ling Ao near site and 10461 at the far site. By performing a rate-only analysis, the value of $sin^2 2\theta_{13}$ was determined to be $0.092 \pm 0.017$.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Home to hundreds of millions of souls and land of excessiveness, the Himalaya is also the locus of a unique seismicity whose scope and peculiarities still remain to this day somewhat mysterious. Having claimed the lives of kings, or turned ancient timeworn cities into heaps of rubbles and ruins, earthquakes eerily inhabit Nepalese folk tales with the fatalistic message that nothing lasts forever. From a scientific point of view as much as from a human perspective, solving the mysteries of Himalayan seismicity thus represents a challenge of prime importance. Documenting geodetic strain across the Nepal Himalaya with various GPS and leveling data, we show that unlike other subduction zones that exhibit a heterogeneous and patchy coupling pattern along strike, the last hundred kilometers of the Main Himalayan Thrust fault, or MHT, appear to be uniformly locked, devoid of any of the “creeping barriers” that traditionally ward off the propagation of large events. The approximately 20 mm/yr of reckoned convergence across the Himalaya matching previously established estimates of the secular deformation at the front of the arc, the slip accumulated at depth has to somehow elastically propagate all the way to the surface at some point. And yet, neither large events from the past nor currently recorded microseismicity nearly compensate for the massive moment deficit that quietly builds up under the giant mountains. Along with this large unbalanced moment deficit, the uncommonly homogeneous coupling pattern on the MHT raises the question of whether or not the locked portion of the MHT can rupture all at once in a giant earthquake. Univocally answering this question appears contingent on the still elusive estimate of the magnitude of the largest possible earthquake in the Himalaya, and requires tight constraints on local fault properties. What makes the Himalaya enigmatic also makes it the potential source of an incredible wealth of information, and we exploit some of the oddities of Himalayan seismicity in an effort to improve the understanding of earthquake physics and cipher out the properties of the MHT. Thanks to the Himalaya, the Indo-Gangetic plain is deluged each year under a tremendous amount of water during the annual summer monsoon that collects and bears down on the Indian plate enough to pull it away from the Eurasian plate slightly, temporarily relieving a small portion of the stress mounting on the MHT. As the rainwater evaporates in the dry winter season, the plate rebounds and tension is increased back on the fault. Interestingly, the mild waggle of stress induced by the monsoon rains is about the same size as that from solid-Earth tides which gently tug at the planets solid layers, but whereas changes in earthquake frequency correspond with the annually occurring monsoon, there is no such correlation with Earth tides, which oscillate back-and-forth twice a day. We therefore investigate the general response of the creeping and seismogenic parts of MHT to periodic stresses in order to link these observations to physical parameters. First, the response of the creeping part of the MHT is analyzed with a simple spring-and-slider system bearing rate-strengthening rheology, and we show that at the transition with the locked zone, where the friction becomes near velocity neutral, the response of the slip rate may be amplified at some periods, which values are analytically related to the physical parameters of the problem. Such predictions therefore hold the potential of constraining fault properties on the MHT, but still await observational counterparts to be applied, as nothing indicates that the variations of seismicity rate on the locked part of the MHT are the direct expressions of variations of the slip rate on its creeping part, and no variations of the slip rate have been singled out from the GPS measurements to this day. When shifting to the locked seismogenic part of the MHT, spring-and-slider models with rate-weakening rheology are insufficient to explain the contrasted responses of the seismicity to the periodic loads that tides and monsoon both place on the MHT. Instead, we resort to numerical simulations using the Boundary Integral CYCLes of Earthquakes algorithm and examine the response of a 2D finite fault embedded with a rate-weakening patch to harmonic stress perturbations of various periods. We show that such simulations are able to reproduce results consistent with a gradual amplification of sensitivity as the perturbing period get larger, up to a critical period corresponding to the characteristic time of evolution of the seismicity in response to a step-like perturbation of stress. This increase of sensitivity was not reproduced by simple 1D-spring-slider systems, probably because of the complexity of the nucleation process, reproduced only by 2D-fault models. When the nucleation zone is close to its critical unstable size, its growth becomes highly sensitive to any external perturbations and the timings of produced events may therefore find themselves highly affected. A fully analytical framework has yet to be developed and further work is needed to fully describe the behavior of the fault in terms of physical parameters, which will likely provide the keys to deduce constitutive properties of the MHT from seismological observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lake Elsinore quadrangle covers about 250 square miles and includes parts of the southwest margin of the Perris Block, the Elsinore trough, the southeastern end of the Santa Ana Mountains, and the Elsinore Mountains.

The oldest rocks consist of an assemblage of metamorphics of igneous effusive and sedimentary origin, probably, for the most part, of Triassic age. They are intruded by diorite and various hypabyssal rocks, then in turn by granitic rocks, which occupy over 40 percent of the area. Following this last igneous activity of probable Lower Cretaceous age, an extended period of sedimentation started with the deposition of the marine Upper Cretaceous Chico formation and continued during the Paloecene under alternating marine and continental conditions on the margins of the blocks. A marine regression towards the north, during the Neocene, accounts for the younger Tertiary strata in the region under consideration.

Outpouring of basalts to the southeast indicates that igneous activity was resumed toward the close of the Tertiary. The fault zone, which characterizes the Elsinor trough, marks one of the major tectonic lines of southem California. It separates the upthrown and tilted block of the Santa Ana Mountains to the south from the Perris Block to the north.

Most of the faults are normal in type and nearly parallel to the general trend of the trough, or intersect each other at an acute angle. Vertical displacements generally exceed the horizontal ones and several periods of activity are recognized.

Tilting of Tertiary and older Quaternary sediments in the trough have produced broad synclinal structures which have been modified by subsequent faulting.

Five old surfaces of erosion are exposed on the highlands.

The mineral resources of the region are mainly high-grade clay deposits and mineral waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crustal structure in Southern California is investigated using travel times from over 200 stations and thousands of local earthquakes. The data are divided into two sets of first arrivals representing a two-layer crust. The Pg arrivals have paths that refract at depths near 10 km and the Pn arrivals refract along the Moho discontinuity. These data are used to find lateral and azimuthal refractor velocity variations and to determine refractor topography.

In Chapter 2 the Pn raypaths are modeled using linear inverse theory. This enables statistical verification that static delays, lateral slowness variations and anisotropy are all significant parameters. However, because of the inherent size limitations of inverse theory, the full array data set could not be processed and the possible resolution was limited. The tomographic backprojection algorithm developed for Chapters 3 and 4 avoids these size problems. This algorithm allows us to process the data sequentially and to iteratively refine the solution. The variance and resolution for tomography are determined empirically using synthetic structures.

The Pg results spectacularly image the San Andreas Fault, the Garlock Fault and the San Jacinto Fault. The Mojave has slower velocities near 6.0 km/s while the Peninsular Ranges have higher velocities of over 6.5 km/s. The San Jacinto block has velocities only slightly above the Mojave velocities. It may have overthrust Mojave rocks. Surprisingly, the Transverse Ranges are not apparent at Pg depths. The batholiths in these mountains are possibly only surficial.

Pn velocities are fast in the Mojave, slow in Southern California Peninsular Ranges and slow north of the Garlock Fault. Pn anisotropy of 2% with a NWW fast direction exists in Southern California. A region of thin crust (22 km) centers around the Colorado River where the crust bas undergone basin and range type extension. Station delays see the Ventura and Los Angeles Basins but not the Salton Trough, where high velocity rocks underlie the sediments. The Transverse Ranges have a root in their eastern half but not in their western half. The Southern Coast Ranges also have a thickened crust but the Peninsular Ranges have no major root.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.

In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.

Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.

In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.

Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.

Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.

Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.

Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. Foehn winds of southern California.
An investigation of the hot, dry and dust laden winds occurring in the late fall and early winter in the Los Angeles Basin and attributed in the past to the influences of the desert regions to the north revealed that these currents were of a foehn nature. Their properties were found to be entirely due to dynamical heating produced in the descent from the high level areas in the interior to the lower Los Angeles Basin. Any dust associated with the phenomenon was found to be acquired from the Los Angeles area rather than transported from the desert. It was found that the frequency of occurrence of a mild type foehn of this nature during this season was sufficient to warrant its classification as a winter monsoon. This results from the topography of the Los Angeles region which allows an easy entrance to the air from the interior by virtue of the low level mountain passes north of the area. This monsoon provides the mild winter climate of southern California since temperatures associated with the foehn currents are far higher than those experienced when maritime air from the adjacent Pacific Ocean occupies the region.

II. Foehn wind cyclo-genesis.
Intense anticyclones frequently build up over the high level regions of the Great Basin and Columbia Plateau which lie between the Sierra Nevada and Cascade Mountains to the west and the Rocky Mountains to the east. The outflow from these anticyclones produce extensive foehns east of the Rockies in the comparatively low level areas of the middle west and the Canadian provinces of Alberta and Saskatchewan. Normally at this season of the year very cold polar continental air masses are present over this territory and with the occurrence of these foehns marked discontinuity surfaces arise between the warm foehn current, which is obliged to slide over a colder mass, and the Pc air to the east. Cyclones are easily produced from this phenomenon and take the form of unstable waves which propagate along the discontinuity surface between the two dissimilar masses. A continual series of such cyclones was found to occur as long as the Great Basin anticyclone is maintained with undiminished intensity.

III. Weather conditions associated with the Akron disaster.
This situation illustrates the speedy development and propagation of young disturbances in the eastern United States during the spring of the year under the influence of the conditionally unstable tropical maritime air masses which characterise the region. It also furnishes an excellent example of the superiority of air mass and frontal methods of weather prediction for aircraft operation over the older methods based upon pressure distribution.

IV. The Los Angeles storm of December 30, 1933 to January 1, 1934.
This discussion points out some of the fundamental interactions occurring between air masses of the North Pacific Ocean in connection with Pacific Coast storms and the value of topographic and aerological considerations in predicting them. Estimates of rainfall intensity and duration from analyses of this type may be made and would prove very valuable in the Los Angeles area in connection with flood control problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite years of research on low-angle detachments, much about them remains enigmatic. This thesis addresses some of the uncertainty regarding two particular detachments, the Mormon Peak detachment in Nevada and the Heart Mountain detachment in Wyoming and Montana.

Constraints on the geometry and kinematics of emplacement of the Mormon Peak detachment are provided by detailed geologic mapping of the Meadow Valley Mountains, along with an analysis of structural data within the allochthon in the Mormon Mountains. Identifiable structures well suited to constrain the kinematics of the detachment include a newly mapped, Sevier-age monoclinal flexure in the hanging wall of the detachment. This flexure, including the syncline at its base and the anticline at its top, can be readily matched to the base and top of the frontal Sevier thrust ramp, which is exposed in the footwall of the detachment to the east in the Mormon Mountains and Tule Springs Hills. The ~12 km of offset of these structural markers precludes the radial sliding hypothesis for emplacement of the allochthon.

The role of fluids in the slip along faults is a widely investigated topic, but the use of carbonate clumped-isotope thermometry to investigate these fluids is new. Faults rocks from within ~1 m of the Mormon Peak detachment, including veins, breccias, gouges, and host rocks, were analyzed for carbon, oxygen, and clumped-isotope measurements. The data indicate that much of the carbonate breccia and gouge material along the detachment is comminuted host rock, as expected. Measurements in vein material indicate that the fluid system is dominated by meteoric water, whose temperature indicates circulation to substantial depths (c. 4 km) in the upper crust near the fault zone.

Slip along the subhorizontal Heart Mountain detachment is particularly enigmatic, and many different mechanisms for failure have been proposed, predominantly involving catastrophic failure. Textural evidence of multiple slip events is abundant, and include multiple brecciation events and cross-cutting clastic dikes. Footwall deformation is observed in numerous exposures of the detachment. Stylolitic surfaces and alteration textures within and around “banded grains” previously interpreted to be an indicator of high-temperature fluidization along the fault suggest their formation instead via low-temperature dissolution and alteration processes. There is abundant textural evidence of the significant role of fluids along the detachment via pressure solution. The process of pressure solution creep may be responsible for enabling multiple slip events on the low-angle detachment, via a local rotation of the stress field.

Clumped-isotope thermometry of fault rocks associated with the Heart Mountain detachment indicates that despite its location on the flanks of a volcano that was active during slip, the majority of carbonate along the Heart Mountain detachment does not record significant heating above ambient temperatures (c. 40-70°C). Instead, cold meteoric fluids infiltrated the detachment breccia, and carbonate precipitated under ambient temperatures controlled by structural depth. Locally, fault gouge does preserve hot temperatures (>200°C), as is observed in both the Mormon Peak detachment and Heart Mountain detachment areas. Samples with very hot temperatures attributable to frictional shear heating are present but rare. They appear to be best preserved in hanging wall structures related to the detachment, rather than along the main detachment.

Evidence is presented for the prevalence of relatively cold, meteoric fluids along both shallow crustal detachments studied, and for protracted histories of slip along both detachments. Frictional heating is evident from both areas, but is a minor component of the preserved fault rock record. Pressure solution is evident, and might play a role in initiating slip on the Heart Mountain fault, and possibly other low-angle detachments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Politically the Colorado river is an interstate as well as an international stream. Physically the basin divides itself distinctly into three sections. The upper section from head waters to the mouth of San Juan comprises about 40 percent of the total of the basin and affords about 87 percent of the total runoff, or an average of about 15 000 000 acre feet per annum. High mountains and cold weather are found in this section. The middle section from the mouth of San Juan to the mouth of the Williams comprises about 35 percent of the total area of the basin and supplies about 7 percent of the annual runoff. Narrow canyons and mild weather prevail in this section. The lower third of the basin is composed of mainly hot arid plains of low altitude. It comprises some 25 percent of the total area of the basin and furnishes about 6 percent of the average annual runoff.

The proposed Diamond Creek reservoir is located in the middle section and is wholly within the boundary of Arizona. The site is at the mouth of Diamond Creek and is only 16 m. from Beach Spring, a station on the Santa Fe railroad. It is solely a power project with a limited storage capacity. The dam which creats the reservoir is of the gravity type to be constructed across the river. The walls and foundation are of granite. For a dam of 290 feet in height, the back water will be about 25 m. up the river.

The power house will be placed right below the dam perpendicular to the axis of the river. It is entirely a concrete structure. The power installation would consist of eighteen 37 500 H.P. vertical, variable head turbines, directly connected to 28 000 kwa. 110 000 v. 3 phase, 60 cycle generators with necessary switching and auxiliary apparatus. Each unit is to be fed by a separate penstock wholly embedded into the masonry.

Concerning the power market, the main electric transmission lines would extend to Prescott, Phoenix, Mesa, Florence etc. The mining regions of the mountains of Arizona would be the most adequate market. The demand of power in the above named places might not be large at present. It will, from the observation of the writer, rapidly increase with the wonderful advancement of all kinds of industrial development.

All these things being comparatively feasible, there is one difficult problem: that is the silt. At the Diamond Creek dam site the average annual silt discharge is about 82 650 acre feet. The geographical conditions, however, will not permit silt deposites right in the reservoir. So this design will be made under the assumption given in Section 4.

The silt condition and the change of lower course of the Colorado are much like those of the Yellow River in China. But one thing is different. On the Colorado most of the canyon walls are of granite, while those on the Yellow are of alluvial loess: so it is very hard, if not impossible, to get a favorable dam site on the lower part. As a visitor to this country, I should like to see the full development of the Colorado: but how about THE YELLOW!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Linda Vista Bridge spans the Arroyo Seco about a quarter of a mile above the Colorado Street Bridge, but serves an entirely different territory; as there is no road between there on the west bank. Los Angeles, Hollywood, and several of the beach cities can be reached by the way of the Colorado Street Bridge. The Linda Vista Bridge carries the traffic to the northwest of Pasadena, that is, Flintridge, Linda Vista, Montrose, Sunland. After leaving the bridge, the road follows the west bank of the Arroyo almost to the mouth of the canyon; then to the west along the foot of the mountains and into the San Fernando Valley.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several types of seismological data, including surface wave group and phase velocities, travel times from large explosions, and teleseismic travel time anomalies, have indicated that there are significant regional variations in the upper few hundred kilometers of the mantle beneath continental areas. Body wave travel times and amplitudes from large chemical and nuclear explosions are used in this study to delineate the details of these variations beneath North America.

As a preliminary step in this study, theoretical P wave travel times, apparent velocities, and amplitudes have been calculated for a number of proposed upper mantle models, those of Gutenberg, Jeffreys, Lehman, and Lukk and Nersesov. These quantities have been calculated for both P and S waves for model CIT11GB, which is derived from surface wave dispersion data. First arrival times for all the models except that of Lukk and Nersesov are in close agreement, but the travel time curves for later arrivals are both qualitatively and quantitatively very different. For model CIT11GB, there are two large, overlapping regions of triplication of the travel time curve, produced by regions of rapid velocity increase near depths of 400 and 600 km. Throughout the distance range from 10 to 40 degrees, the later arrivals produced by these discontinuities have larger amplitudes than the first arrivals. The amplitudes of body waves, in fact, are extremely sensitive to small variations in the velocity structure, and provide a powerful tool for studying structural details.

Most of eastern North America, including the Canadian Shield has a Pn velocity of about 8.1 km/sec, with a nearly abrupt increase in compressional velocity by ~ 0.3 km/sec near at a depth varying regionally between 60 and 90 km. Variations in the structure of this part of the mantle are significant even within the Canadian Shield. The low-velocity zone is a minor feature in eastern North America and is subject to pronounced regional variations. It is 30 to 50 km thick, and occurs somewhere in the depth range from 80 to 160 km. The velocity decrease is less than 0.2 km/sec.

Consideration of the absolute amplitudes indicates that the attenuation due to anelasticity is negligible for 2 hz waves in the upper 200 km along the southeastern and southwestern margins of the Canadian Shield. For compressional waves the average Q for this region is > 3000. The amplitudes also indicate that the velocity gradient is at least 2 x 10-3 both above and below the low-velocity zone, implying that the temperature gradient is < 4.8°C/km if the regions are chemically homogeneous.

In western North America, the low-velocity zone is a pronounced feature, extending to the base of the crust and having minimum velocities of 7.7 to 7.8 km/sec. Beneath the Colorado Plateau and Southern Rocky Mountains provinces, there is a rapid velocity increase of about 0.3 km/sec, similar to that observed in eastern North America, but near a depth of 100 km.

Complicated travel time curves observed on profiles with stations in both eastern and western North America can be explained in detail by a model taking into account the lateral variations in the structure of the low-velocity zone. These variations involve primarily the velocity within the zone and the depth to the top of the zone; the depth to the bottom is, for both regions, between 140 and 160 km.

The depth to the transition zone near 400 km also varies regionally, by about 30-40 km. These differences imply variations of 250 °C in the temperature or 6 % in the iron content of the mantle, if the phase transformation of olivine to the spinel structure is assumed responsible. The structural variations at this depth are not correlated with those at shallower depths, and follow no obvious simple pattern.

The computer programs used in this study are described in the Appendices. The program TTINV (Appendix IV) fits spherically symmetric earth models to observed travel time data. The method, described in Appendix III, resembles conventional least-square fitting, using partial derivatives of the travel time with respect to the model parameters to perturb an initial model. The usual ill-conditioned nature of least-squares techniques is avoided by a technique which minimizes both the travel time residuals and the model perturbations.

Spherically symmetric earth models, however, have been found inadequate to explain most of the observed travel times in this study. TVT4, a computer program that performs ray theory calculations for a laterally inhomogeneous earth model, is described in Appendix II. Appendix I gives a derivation of seismic ray theory for an arbitrarily inhomogeneous earth model.