8 resultados para Pure points of a measure

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the radially symmetric nonlinear von Kármán plate equations for circular or annular plates in the limit of small thickness. The loads on the plate consist of a radially symmetric pressure load and a uniform edge load. The dependence of the steady states on the edge load and thickness is studied using asymptotics as well as numerical calculations. The von Kármán plate equations are a singular perturbation of the Fӧppl membrane equation in the asymptotic limit of small thickness. We study the role of compressive membrane solutions in the small thickness asymptotic behavior of the plate solutions.

We give evidence for the existence of a singular compressive solution for the circular membrane and show by a singular perturbation expansion that the nonsingular compressive solution approach this singular solution as the radial stress at the center of the plate vanishes. In this limit, an infinite number of folds occur with respect to the edge load. Similar behavior is observed for the annular membrane with zero edge load at the inner radius in the limit as the circumferential stress vanishes.

We develop multiscale expansions, which are asymptotic to members of this family for plates with edges that are elastically supported against rotation. At some thicknesses this approximation breaks down and a boundary layer appears at the center of the plate. In the limit of small normal load, the points of breakdown approach the bifurcation points corresponding to buckling of the nondeflected state. A uniform asymptotic expansion for small thickness combining the boundary layer with a multiscale approximation of the outer solution is developed for this case. These approximations complement the well known boundary layer expansions based on tensile membrane solutions in describing the bending and stretching of thin plates. The approximation becomes inconsistent as the clamped state is approached by increasing the resistance against rotation at the edge. We prove that such an expansion for the clamped circular plate cannot exist unless the pressure load is self-equilibrating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface resistance and the critical magnetic field of lead electroplated on copper were studied at 205 MHz in a half-wave coaxial resonator. The observed surface resistance at a low field level below 4.2°K could be well described by the BCS surface resistance with the addition of a temperature independent residual resistance. The available experimental data suggest that the major fraction of the residual resistance in the present experiment was due to the presence of an oxide layer on the surface. At higher magnetic field levels the surface resistance was found to be enhanced due to surface imperfections.

The attainable rf critical magnetic field between 2.2°K and T_c of lead was found to be limited not by the thermodynamic critical field but rather by the superheating field predicted by the one-dimensional Ginzburg-Landau theory. The observed rf critical field was very close to the expected superheating field, particularly in the higher reduced temperature range, but showed somewhat stronger temperature dependence than the expected superheating field in the lower reduced temperature range.

The rf critical magnetic field was also studied at 90 MHz for pure tin and indium, and for a series of SnIn and InBi alloys spanning both type I and type II superconductivity. The samples were spherical with typical diameters of 1-2 mm and a helical resonator was used to generate the rf magnetic field in the measurement. The results of pure samples of tin and indium showed that a vortex-like nucleation of the normal phase was responsible for the superconducting-to-normal phase transition in the rf field at temperatures up to about 0.98-0.99 T_c' where the ideal superheating limit was being reached. The results of the alloy samples showed that the attainable rf critical fields near T_c were well described by the superheating field predicted by the one-dimensional GL theory in both the type I and type II regimes. The measurement was also made at 300 MHz resulting in no significant change in the rf critical field. Thus it was inferred that the nucleation time of the normal phase, once the critical field was reached, was small compared with the rf period in this frequency range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a logarithmic potential theory on Riemann surfaces which generalizes logarithmic potential theory on the complex plane. We show the existence of an equilibrium measure and examine its structure. This leads to a formula for the structure of the equilibrium measure which is new even in the plane. We then use our results to study quadrature domains, Laplacian growth, and Coulomb gas ensembles on Riemann surfaces. We prove that the complement of the support of the equilibrium measure satisfies a quadrature identity. Furthermore, our setup allows us to naturally realize weak solutions of Laplacian growth (for a general time-dependent source) as an evolution of the support of equilibrium measures. When applied to the Riemann sphere this approach unifies the known methods for generating interior and exterior Laplacian growth. We later narrow our focus to a special class of quadrature domains which we call Algebraic Quadrature Domains. We show that many of the properties of quadrature domains generalize to this setting. In particular, the boundary of an Algebraic Quadrature Domain is the inverse image of a planar algebraic curve under a meromorphic function. This makes the study of the topology of Algebraic Quadrature Domains an interesting problem. We briefly investigate this problem and then narrow our focus to the study of the topology of classical quadrature domains. We extend the results of Lee and Makarov and prove (for n ≥ 3) c ≤ 5n-5, where c and n denote the connectivity and degree of a (classical) quadrature domain. At the same time we obtain a new upper bound on the number of isolated points of the algebraic curve corresponding to the boundary and thus a new upper bound on the number of special points. In the final chapter we study Coulomb gas ensembles on Riemann surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. This led to predictions of improved materials, some of which were subsequently validated with experiments by our collaborators.

In part I, the challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface, and hence we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine all intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We found that the rate determination step (RDS) was the Oad hydration reaction (Oad + H2Oad -> OHad + OHad) in both cases, but that the barrier for pure Pt of 0.50 eV is reduced to 0.48 eV for Pt3Os, which at 80 degrees C would increase the rate by 218%. We collaborated with the Pu-Wei Wu’s group to carry out experiments, where we found that the dealloying process-treated Pt2Os catalyst showed two-fold higher activity at 25 degrees C than pure Pt and that the alloy had 272% improved stability, validating our theoretical predictions.

We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML/Os core-shell). We found that Pt2ML/Os has the highest activity (compared to pure Pt and to the Pt3Os alloy) because the 0.37 eV barrier decreases to 0.23 eV. To understand what aspects of the core shell structure lead to this improved performance, we considered the effect on ORR of compressing the alloy slab to the dimensions of pure Pt. However this had little effect, with the same RDS barrier 0.37 eV. This shows that the ligand effect (the electronic structure modification resulting from the Os substrate) plays a more important role than the strain effect, and is responsible for the improved activity of the core- shell catalyst. Experimental materials characterization proves the core-shell feature of our catalyst. The electrochemical experiment for Pt2ML/Os/C showed 3.5 to 5 times better ORR activity at 0.9V (vs. NHE) in 0.1M HClO4 solution at 25 degrees C as compared to those of commercially available Pt/C. The excellent correlation between experimental half potential and the OH binding energies and RDS barriers validate the feasibility of predicting catalyst activity using QM calculation and a simple Langmuir–Hinshelwood model.

In part II, we used QM calculations to study methane stream reforming on a Ni-alloy catalyst surfaces for solid oxide fuel cell (SOFC) application. SOFC has wide fuel adaptability but the coking and sulfur poisoning will reduce its stability. Experimental results suggested that the Ni4Fe alloy improves both its activity and stability compared to pure Ni. To understand the atomistic origin of this, we carried out QM calculations on surface segregation and found that the most stable configuration for Ni4Fe has a Fe atom distribution of (0%, 50%, 25%, 25%, 0%) starting at the bottom layer. We calculated that the binding of C atoms on the Ni4Fe surface is 142.9 Kcal/mol, which is about 10 Kcal/mol weaker compared to the pure Ni surface. This weaker C binding energy is expected to make coke formation less favorable, explaining why Ni4Fe has better coking resistance. This result confirms the experimental observation. The reaction energy barriers for CHx decomposition and C binding on various alloy surface, Ni4X (X=Fe, Co, Mn, and Mo), showed Ni4Fe, Ni4Co, and Fe4Mn all have better coking resistance than pure Ni, but that only Ni4Fe and Fe4Mn have (slightly) improved activity compared to pure Ni.

In part III, we used QM to examine the proton transport in doped perovskite-ceramics. Here we used a 2x2x2 supercell of perovskite with composition Ba8X7M1(OH)1O23 where X=Ce or Zr and M=Y, Gd, or Dy. Thus in each case a 4+ X is replace by a 3+ M plus a proton on one O. Here we predicted the barriers for proton diffusion allowing both includes intra-octahedron and inter-octahedra proton transfer. Without any restriction, we only observed the inter-octahedra proton transfer with similar energy barrier as previous computational work but 0.2 eV higher than experimental result for Y doped zirconate. For one restriction in our calculations is that the Odonor-Oacceptor atoms were kept at fixed distances, we found that the barrier difference between cerates/zirconates with various dopants are only 0.02~0.03 eV. To fully address performance one would need to examine proton transfer at grain boundaries, which will require larger scale ReaxFF reactive dynamics for systems with millions of atoms. The QM calculations used here will be used to train the ReaxFF force field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of the set ϐ(A) of all eigenvalues of all complex matrices (elementwise) equimodular with a given n x n non-negative matrix A is studied. The problem was suggested by O. Taussky and some aspects have been studied by R. S. Varga and B.W. Levinger.

If every matrix equimodular with A is non-singular, then A is called regular. A new proof of the P. Camion-A.J. Hoffman characterization of regular matrices is given.

The set ϐ(A) consists of m ≤ n closed annuli centered at the origin. Each gap, ɤ, in this set can be associated with a class of regular matrices with a (unique) permutation, π(ɤ). The association depends on both the combinatorial structure of A and the size of the aii. Let A be associated with the set of r permutations, π1, π2,…, πr, where each gap in ϐ(A) is associated with one of the πk. Then r ≤ n, even when the complement of ϐ(A) has n+1 components. Further, if π(ɤ) is the identity, the real boundary points of ɤ are eigenvalues of real matrices equimodular with A. In particular, if A is essentially diagonally dominant, every real boundary point of ϐ(A) is an eigenvalues of a real matrix equimodular with A.

Several conjectures based on these results are made which if verified would constitute an extension of the Perron-Frobenius Theorem, and an algebraic method is introduced which unites the study of regular matrices with that of ϐ(A).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in Rd converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.

We consider the similar extension problem pertaining to BMO(ρ) functions; that is, those VMO functions whose mean oscillation over any cube is O(ρ(l(Q))) where l(Q) is the length of Q and ρ is a positive, non-decreasing function with ρ(0+) = 0.

We apply these results to obtain sufficient conditions for a Blaschke sequence to be the zeros of an analytic BMO(ρ) function on the unit disc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let E be a compact subset of the n-dimensional unit cube, 1n, and let C be a collection of convex bodies, all of positive n-dimensional Lebesgue measure, such that C contains bodies with arbitrarily small measure. The dimension of E with respect to the covering class C is defined to be the number

dC(E) = sup(β:Hβ, C(E) > 0),

where Hβ, C is the outer measure

inf(Ʃm(Ci)β:UCi E, Ci ϵ C) .

Only the one and two-dimensional cases are studied. Moreover, the covering classes considered are those consisting of intervals and rectangles, parallel to the coordinate axes, and those closed under translations. A covering class is identified with a set of points in the left-open portion, 1’n, of 1n, whose closure intersects 1n - 1’n. For n = 2, the outer measure Hβ, C is adopted in place of the usual:

Inf(Ʃ(diam. (Ci))β: UCi E, Ci ϵ C),

for the purpose of studying the influence of the shape of the covering sets on the dimension dC(E).

If E is a closed set in 11, let M(E) be the class of all non-decreasing functions μ(x), supported on E with μ(x) = 0, x ≤ 0 and μ(x) = 1, x ≥ 1. Define for each μ ϵ M(E),

dC(μ) = lim/c → inf/0 log ∆μ(c)/log c , (c ϵ C)

where ∆μ(c) = v/x (μ(x+c) – μ(x)). It is shown that

dC(E) = sup (dC(μ):μ ϵ M(E)).

This notion of dimension is extended to a certain class Ӻ of sub-additive functions, and the problem of studying the behavior of dC(E) as a function of the covering class C is reduced to the study of dC(f) where f ϵ Ӻ. Specifically, the set of points in 11,

(*) {dB(F), dC(f)): f ϵ Ӻ}

is characterized by a comparison of the relative positions of the points of B and C. A region of the form (*) is always closed and doubly-starred with respect to the points (0, 0) and (1, 1). Conversely, given any closed region in 12, doubly-starred with respect to (0, 0) and (1, 1), there are covering classes B and C such that (*) is exactly that region. All of the results are shown to apply to the dimension of closed sets E. Similar results can be obtained when a finite number of covering classes are considered.

In two dimensions, the notion of dimension is extended to the class M, of functions f(x, y), non-decreasing in x and y, supported on 12 with f(x, y) = 0 for x · y = 0 and f(1, 1) = 1, by the formula

dC(f) = lim/s · t → inf/0 log ∆f(s, t)/log s · t , (s, t) ϵ C

where

∆f(s, t) = V/x, y (f(x+s, y+t) – f(x+s, y) – f(x, y+t) + f(x, t)).

A characterization of the equivalence dC1(f) = dC2(f) for all f ϵ M, is given by comparison of the gaps in the sets of products s · t and quotients s/t, (s, t) ϵ Ci (I = 1, 2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-finger caging offers a rigorous and robust approach to robot grasping. This thesis provides several novel algorithms for caging polygons and polyhedra in two and three dimensions. Caging refers to a robotic grasp that does not necessarily immobilize an object, but prevents it from escaping to infinity. The first algorithm considers caging a polygon in two dimensions using two point fingers. The second algorithm extends the first to three dimensions. The third algorithm considers caging a convex polygon in two dimensions using three point fingers, and considers robustness of this cage to variations in the relative positions of the fingers.

This thesis describes an algorithm for finding all two-finger cage formations of planar polygonal objects based on a contact-space formulation. It shows that two-finger cages have several useful properties in contact space. First, the critical points of the cage representation in the hand’s configuration space appear as critical points of the inter-finger distance function in contact space. Second, these critical points can be graphically characterized directly on the object’s boundary. Third, contact space admits a natural rectangular decomposition such that all critical points lie on the rectangle boundaries, and the sublevel sets of contact space and free space are topologically equivalent. These properties lead to a caging graph that can be readily constructed in contact space. Starting from a desired immobilizing grasp of a polygonal object, the caging graph is searched for the minimal, intermediate, and maximal caging regions surrounding the immobilizing grasp. An example constructed from real-world data illustrates and validates the method.

A second algorithm is developed for finding caging formations of a 3D polyhedron for two point fingers using a lower dimensional contact-space formulation. Results from the two-dimensional algorithm are extended to three dimension. Critical points of the inter-finger distance function are shown to be identical to the critical points of the cage. A decomposition of contact space into 4D regions having useful properties is demonstrated. A geometric analysis of the critical points of the inter-finger distance function results in a catalog of grasps in which the cages change topology, leading to a simple test to classify critical points. With these properties established, the search algorithm from the two-dimensional case may be applied to the three-dimensional problem. An implemented example demonstrates the method.

This thesis also presents a study of cages of convex polygonal objects using three point fingers. It considers a three-parameter model of the relative position of the fingers, which gives complete generality for three point fingers in the plane. It analyzes robustness of caging grasps to variations in the relative position of the fingers without breaking the cage. Using a simple decomposition of free space around the polygon, we present an algorithm which gives all caging placements of the fingers and a characterization of the robustness of these cages.