3 resultados para Proteomics

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.

The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.

The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).

The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.

The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.

In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In natural environments, bacterial physiology is frequently characterized by slow metabolic rates and complex cellular heterogeneities. The opportunistic pathogen Pseudomonas aeruginosa provides one such example; P. aeruginosa forms untreatable chronic biofilm infections of the cystic fibrosis lung, where oxygen limitation can lead to states of metabolic dormancy. To better understand the biology of these states, in vitro experiments must be adapted to better recapitulate natural settings. However, low rates of protein turnover and cellular or phenotypic complexity make these systems difficult to study using established methods. Here we adapt the bioorthogonal noncanonical amino acid tagging (BONCAT) method for time- and cell-selective proteomic analysis to the study of P. aeruginosa. Analysis of proteins synthesized in an anoxic dormancy state led to the discovery of a new type of transcriptional regulator which we designated SutA. We performed detailed analyses of SutA’s role in transcription under slow growth states and we elucidated the structural basis for its regulatory behavior. Additionally, we used cell-selective targeting of BONCAT labeling to measure the dynamic proteomic response of an antibiotic-tolerant biofilm subpopulation. Overall this work shows the utility of selective proteomics as applied to bacterial physiology and describes the broad biological insight obtained from that application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergence of mass spectrometry-based proteomics has revolutionized the study of proteins and their abundances, functions, interactions, and modifications. However, in a multicellular organism, it is difficult to monitor dynamic changes in protein synthesis in a specific cell type within its native environment. In this thesis, we describe methods that enable the metabolic labeling, purification, and analysis of proteins in specific cell types and during defined periods in live animals. We first engineered a eukaryotic phenylalanyl-tRNA synthetase (PheRS) to selectively recognize the unnatural L-phenylalanine analog p-azido-L-phenylalanine (Azf). Using Caenorhabditis elegans, we expressed the engineered PheRS in a cell type of choice (i.e. body wall muscles, intestinal epithelial cells, neurons, pharyngeal muscles), permitting proteins in those cells -- and only those cells -- to be labeled with azides. Labeled proteins are therefore subject to "click" conjugation to cyclooctyne-functionalized affnity probes, separation from the rest of the protein pool and identification by mass spectrometry. By coupling our methodology with heavy isotopic labeling, we successfully identified proteins -- including proteins with previously unknown expression patterns -- expressed in targeted subsets of cells. While cell types like body wall or pharyngeal muscles can be targeted with a single promoter, many cells cannot; spatiotemporal selectivity typically results from the combinatorial action of multiple regulators. To enhance spatiotemporal selectivity, we next developed a two-component system to drive overlapping -- but not identical -- patterns of expression of engineered PheRS, restricting labeling to cells that express both elements. Specifically, we developed a split-intein-based split-PheRS system for highly efficient PheRS-reconstitution through protein splicing. Together, these tools represent a powerful approach for unbiased discovery of proteins uniquely expressed in a subset of cells at specific developmental stages.