3 resultados para Processos de back-end

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement.

During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long linear polymers that are end-functionalized with associative groups were studied as additives to hydrocarbon fluids to mitigate the fire hazard associated with the presence of mist in a crash scenario. These polymers were molecularly designed to overcome both the shear-degradation of long polymer chains in turbulent flows, and the chain collapse induced by the random placement of associative groups along polymer backbones. Architectures of associative groups on the polymer chain ends that were tested included clusters of self-associative carboxyl groups and pairs of hetero-complementary associative units.

Linear polymers with clusters of discrete numbers of carboxyl groups on their chain ends were investigated first: an innovative synthetic strategy was devised to achieve unprecedented backbone lengths and precise control of the number of carboxyl groups on chain ends (N). We found that a very narrow range of N allows the co-existence of sufficient end-association strength and polymer solubility in apolar media. Subsequent steady-flow rheological study on solution behavior of such soluble polymers in apolar media revealed that the end-association of very long chains in apolar media leads to the formation of flower-like micelles interconnected by bridging chains, which trap significant fraction of polymer chains into looped structures with low contribution to mist-control. The efficacy of very long 1,4-polybutadiene chains end-functionalized with clusters of four carboxyl groups as mist-control additives for jet fuel was further tested. In addition to being shear-resistant, the polymer was found capable of providing fire-protection to jet fuel at concentrations as low as 0.3wt%. We also found that this polymer has excellent solubility in jet fuel over a wide range of temperature (-30 to +70°C) and negligible interference with dewatering of jet fuel. It does not cause an adverse increase in viscosity at concentrations where mist-control efficacy exists.

Four pairs of hetero-complementary associative end-groups of varying strengths were subsequently investigated, in the hopes of achieving supramolecular aggregates with both mist-control ability and better utilization of polymer building blocks. Rheological study of solutions of the corresponding complementary associative polymer pairs in apolar media revealed the strength of complementary end-association required to achieve supramolecular aggregates capable of modulating rheological properties of the solution.

Both self-associating and complementary associating polymers have therefore been found to resist shear degradation. The successful strategy of building soluble, end-associative polymers with either self-associative or complementary associative groups will guide the next generation of mist-control technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cataphoretic purification of helium was investigated for binary mixtures of He with Ar, Ne, N2, O2, CO, and CO2 in DC glow discharge. An experimental technique was developed to continuously measure the composition in the anode end-bulb without sample withdrawal. Discharge currents ranged from 10 ma to 100 ma. Total gas pressure ranged from 2 torr to 9 torr. Initial compositions of the minority component in He ranged from 1.2 mole percent to 7.5 mole percent.

The cataphoretic separation of Ar and Ne from He was found to be in agreement with previous investigators. The cataphoretic separation of N2, O2, and CO from He was found to be similar to noble gas systems in that the steady-state separation improved with (1) increasing discharge current, (2) increasing gas pressure, and (3) decreasing initial composition of the minority component. In the He-CO2 mixture, the CO2 dissociated to CO plus O2. The fraction of CO2 dissociated was directly proportional to the current and pressure and independent of initial composition.

The experimental results for the separation of Ar, Ne, N2, O2, and CO from He were interpreted in the framework of a recently proposed theoretical model involving an electrostatic Peclet number. In the model the electric field was assumed to be constant. This assumption was checked experimentally and the maximum variation in electric field was 35% in time and 30% in position. Consequently, the assumption of constant electric field introduced no more than 55% variation in the electrostatic Peclet number during a separation.

To aid in the design of new cataphoretic systems, the following design criteria were developed and tested in detail: (1) electric field independent of discharge current, (2) electric field directly proportional to total pressure, (3) ion fraction of impurity directly proportional to discharge current, and (4) ion fraction of impurity independent of total pressure. Although these assumptions are approximate, they enabled the steady-state concentration profile to be predicted to within 25% for 75% of the data. The theoretical model was also tested with respect to the characteristic time associated with transient cataphoresis. Over 80% of the data was within a factor of two of the calculated characteristic times.

The electrostatic Peclet number ranged in value from 0.13 to 4.33. Back-calculated ion fractions of the impurity component ranged in value from 4.8x10-6 to 178x10-6.