2 resultados para Pressure Sensors

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement.

During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optomechanical interaction is an extremely powerful tool with which to measure mechanical motion. The displacement resolution of chip-scale optomechanical systems has been measured on the order of 1⁄10th of a proton radius. So strong is this optomechanical interaction that it has recently been used to remove almost all thermal noise from a mechanical resonator and observe its quantum ground-state of motion starting from cryogenic temperatures.

In this work, chapter 1 describes the basic physics of the canonical optomechanical system, optical measurement techniques, and how the optomechanical interaction affects the coupled mechanical resonator. In chapter 2, we describe our techniques for realizing this canonical optomechanical system in a chip-scale form factor.

In chapter 3, we describe an experiment where we used radiation pressure feedback to cool a mesoscopic mechanical resonator near its quantum ground-state from room-temperature. We cooled the resonator from a room temperature phonon occupation of <n> = 6.5 million to an occupation of <n> = 66, which means the resonator is in its ground state approximately 2% of the time, while being coupled to a room-temperature thermal environment. At the time of this work, this is the closest a mesoscopic mechanical resonator has been to its ground-state of motion at room temperature, and this work begins to open the door to room-temperature quantum control of mechanical objects.

Chapter 4 begins with the realization that the displacement resolutions achieved by optomechanical systems can surpass those of conventional MEMS sensors by an order of magnitude or more. This provides the motivation to develop and calibrate an optomechanical accelerometer with a resolution of approximately 10 micro-g/rt-Hz over a bandwidth of approximately 30 kHz. In chapter 5, we improve upon the performance and practicality of this sensor by greatly increasing the test mass size, investigating and reducing low-frequency noise, and incorporating more robust optical coupling techniques and capacitive wavelength tuning. Finally, in chapter 6 we present our progress towards developing another optomechanical inertial sensor - a gyroscope.