6 resultados para Pollen tube. Subcellular localization

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel Ca^(2+)-binding protein with Mr of 23 K (designated p23) has been identified in avian erythrocytes and thrombocytes. p23 localizes to the marginal bands (MBs), centrosomes and discrete sites around the nuclear membrane in mature avian erythrocytes. p23 appears to bind Ca^(2+) directly and its interaction with subcellular organelles seems to be modulated by intracellular [Ca^(2+)]. However, its unique protein sequence lacks any known Ca^(2+)-binding motif. Developmental analysis reveals that p23 association to its target structures occurs only at very late stages of bone marrow definitive erythropoeisis. In primitive erythroid cells, p23 distributes diffusely in the cytoplasm and lacks any distinct localization. It is postulated that p23 association to subcellular structures may be induced in part by decreased intracellular [Ca^(2+)]. In vitro and in vivo experiments indicate that p23 does not appear to act as a classical microtubule-associated protein (MAP) but p23 homologues appear to be expressed in MB-containing cells of a variety of species from different vertebrate classes. It has been hypothesized that p23 may play a regulatory role in MB stabilization in a Ca^(2+)-dependent manner.

Binucleated (bnbn) turkey erythrocytes were found to express a truncated p23 variant (designated p21) with identical subcellular localization as p23 except immunostaining reveals the presence of multi-centrosomes in bnbn cells. The p21 sequence has a 62 amino acid deletion at the C-terminus and must therefore have an additional ~40 amino acids at the N-terminus. In addition, p21 seems to have lost the ability to bind Ca^(2+) and its supramolecular interactions are not modulated by intracellular [Ca^(2+)]. These apparent differences between p23 and p21 raised the possibility that the p23/p21 allelism could be the Bn/bn genotype. However, genetic analysis suggested that p23/p21 allelism had no absolute correlation with the Bn/bn genotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The roles of the folate receptor and an anion carrier in the uptake of 5- methyltetrahydrofolate (5-MeH_4folate) were studied in cultured human (KB) cells using radioactive 5-MeH_4folate. Binding of the 5-MeH_4folate was inhibited by folic acid, but not by probenecid, an anion carrier inhibitor. The internalization of 5-MeH_4folate was inhibited by low temperature, folic acid, probenecid and methotrexate. Prolonged incubation of cells in the presence of high concentrations of probenecid appeared to inhibit endocytosis of folatereceptors as well as the anion carrier. The V_(max) and K_M values for the carrier were 8.65 ± 0.55 pmol/min/mg cell protein and 3.74 ± 0.54µM, respectively. The transport of 5-MeH4folate was competitively inhibited by folic acid, probenecid and methotrexate. The carrier dissociation constants for folic acid, probenecid and methotreate were 641 µM, 2.23 mM and 13.8 µM, respectively. Kinetic analysis suggests that 5-MeH_4folate at physiological concentration is transported through an anion carrier with the characteristics of the reduced-folate carrier after 5-MeH_4folate is endocytosed by folate receptors in KB cells. Our data with KB cells suggest that folate receptors and probenecid-sensitive carriers work in tandem to transport 5-MeH_4folate to the cytoplasm of cells, based upon the assumption that 1 mM probenecid does not interfere with the acidification of the vesicle where the folate receptors are endocytosed.

Oligodeoxynucleotides designed to hybridize to specific mRNA sequences (antisense oligonucleotides) or double stranded DNA sequences have been used to inhibit the synthesis of a number of cellular and viral proteins (Crooke, S. T. (1993) FASEB J. 7, 533-539; Carter, G. and Lemoine, N. R. (1993) Br. J. Cacer 67, 869-876; Stein, C. A. and cohen, J. S. (1988) Cancer Res. 48, 2659-2668). However, the distribution of the delivered oligonucleotides in the cell, i.e., in the cytoplasm or in the nucleus has not been clearly defined. We studied the kinetics of oligonucleotide transport into the cell nucleus using reconstituted cell nuclei as a model system. We present evidences here that oligonucleotides can freely diffuse into reconstituted nuclei. Our results are consistent with the reports by Leonetti et al. (Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 2702-2706, April 1991), which were published while we were carrying this research independently. We also investigated whether a synthetic nuclear localization signal (NLS) peptide of SV40 T antigen could be used for the nuclear targeting of oligonucleotides. We synthesized a nuclear localization signal peptide-conjugated oligonucleotide to see if a nuclear localization signal peptide can enhance the uptake of oligonucleotides into reconstituted nuclei of Xenopus. Uptake of the NLS peptide-conjugated oligonucleotide was comparable to the control oligonucleotide at similar concentrations, suggesting that the NLS signal peptide does not significantly enhance the nuclear accumulation of oligonucleotides. This result is probably due to the small size of the oligonucleotide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disorder and interactions both play crucial roles in quantum transport. Decades ago, Mott showed that electron-electron interactions can lead to insulating behavior in materials that conventional band theory predicts to be conducting. Soon thereafter, Anderson demonstrated that disorder can localize a quantum particle through the wave interference phenomenon of Anderson localization. Although interactions and disorder both separately induce insulating behavior, the interplay of these two ingredients is subtle and often leads to surprising behavior at the periphery of our current understanding. Modern experiments probe these phenomena in a variety of contexts (e.g. disordered superconductors, cold atoms, photonic waveguides, etc.); thus, theoretical and numerical advancements are urgently needed. In this thesis, we report progress on understanding two contexts in which the interplay of disorder and interactions is especially important.

The first is the so-called “dirty” or random boson problem. In the past decade, a strong-disorder renormalization group (SDRG) treatment by Altman, Kafri, Polkovnikov, and Refael has raised the possibility of a new unstable fixed point governing the superfluid-insulator transition in the one-dimensional dirty boson problem. This new critical behavior may take over from the weak-disorder criticality of Giamarchi and Schulz when disorder is sufficiently strong. We analytically determine the scaling of the superfluid susceptibility at the strong-disorder fixed point and connect our analysis to recent Monte Carlo simulations by Hrahsheh and Vojta. We then shift our attention to two dimensions and use a numerical implementation of the SDRG to locate the fixed point governing the superfluid-insulator transition there. We identify several universal properties of this transition, which are fully independent of the microscopic features of the disorder.

The second focus of this thesis is the interplay of localization and interactions in systems with high energy density (i.e., far from the usual low energy limit of condensed matter physics). Recent theoretical and numerical work indicates that localization can survive in this regime, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in isolated quantum systems: it separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting (“ergodic”) phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present evidence that many-body localization also occurs in quasiperiodic systems that lack true disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lateral migration of neutrally buoyant rigid spheres in two-dimensional unidirectional flows was studied theoretically. The cases of both inertia-induced migration in a Newtonian fluid and normal stress-induced migration in a second-order fluid were considered. Analytical results for the lateral velocities were obtained, and the equilibrium positions and trajectories of the spheres compared favorably with the experimental data available in the literature. The effective viscosity was obtained for a dilute suspension of spheres which were simultaneously undergoing inertia-induced migration and translational Brownian motion in a plane Poiseuille flow. The migration of spheres suspended in a second-order fluid inside a screw extruder was also considered.

The creeping motion of neutrally buoyant concentrically located Newtonian drops through a circular tube was studied experimentally for drops which have an undeformed radius comparable to that of the tube. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop due to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow were obtained for various viscosity ratios, total flow rates, and drop sizes. The results were compared with existing theoretical and experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Regression analyses are performed on in vivo hemodialysis data for the transfer of creatinine, urea, uric acid and inorganic phosphate to determine the effects of variations in certain parameters on the efficiency of dialysis with a Kiil dialyzer. In calculating the mass transfer rates across the membrane, the effects of cell-plasma mass transfer kinetics are considered. The concept of the effective permeability coefficient for the red cell membrane is introduced to account for these effects. A discussion of the consequences of neglecting cell-plasma kinetics, as has been done to date in the literature, is presented.

A physical model for the Kiil dialyzer is presented in order to calculate the available membrane area for mass transfer, the linear blood and dialysate velocities, and other variables. The equations used to determine the independent variables of the regression analyses are presented. The potential dependent variables in the analyses are discussed.

Regression analyses were carried out considering overall mass-transfer coefficients, dialysances, relative dialysances, and relative permeabilities for each substance as the dependent variables. The independent variables were linear blood velocity, linear dialysate velocity, the pressure difference across the membrane, the elapsed time of dialysis, the blood hematocrit, and the arterial plasma concentrations of each substance transferred. The resulting correlations are tabulated, presented graphically, and discussed. The implications of these correlations are discussed from the viewpoint of a research investigator and from the viewpoint of patient treatment.

Recommendations for further experimental work are presented.

Part II

The interfacial structure of concurrent air-water flow in a two-inch diameter horizontal tube in the wavy flow regime has been measured using resistance wave gages. The median water depth, r.m.s. wave height, wave frequency, extrema frequency, and wave velocity have been measured as functions of air and water flow rates. Reynolds numbers, Froude numbers, Weber numbers, and bulk velocities for each phase may be calculated from these measurements. No theory for wave formation and propagation available in the literature was sufficient to describe these results.

The water surface level distribution generally is not adequately represented as a stationary Gaussian process. Five types of deviation from the Gaussian process function were noted in this work. The presence of the tube walls and the relatively large interfacial shear stresses precludes the use of simple statistical analyses to describe the interfacial structure. A detailed study of the behavior of individual fluid elements near the interface may be necessary to describe adequately wavy two-phase flow in systems similar to the one used in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evoked response, a signal present in the electro-encephalogram when specific sense modalities are stimulated with brief sensory inputs, has not yet revealed as much about brain function as it apparently promised when first recorded in the late 1940's. One of the problems has been to record the responses at a large number of points on the surface of the head; thus in order to achieve greater spatial resolution than previously attained, a 50-channel recording system was designed to monitor experiments with human visually evoked responses.

Conventional voltage versus time plots of the responses were found inadequate as a means of making qualitative studies of such a large data space. This problem was solved by creating a graphical display of the responses in the form of equipotential maps of the activity at successive instants during the complete response. In order to ascertain the necessary complexity of any models of the responses, factor analytic procedures were used to show that models characterized by only five or six independent parameters could adequately represent the variability in all recording channels.

One type of equivalent source for the responses which meets these specifications is the electrostatic dipole. Two different dipole models were studied: the dipole in a homogeneous sphere and the dipole in a sphere comprised of two spherical shells (of different conductivities) concentric with and enclosing a homogeneous sphere of a third conductivity. These models were used to determine nonlinear least squares fits of dipole parameters to a given potential distribution on the surface of a spherical approximation to the head. Numerous tests of the procedures were conducted with problems having known solutions. After these theoretical studies demonstrated the applicability of the technique, the models were used to determine inverse solutions for the evoked response potentials at various times throughout the responses. It was found that reliable estimates of the location and strength of cortical activity were obtained, and that the two models differed only slightly in their inverse solutions. These techniques enabled information flow in the brain, as indicated by locations and strengths of active sites, to be followed throughout the evoked response.