8 resultados para Photonics packaging
em CaltechTHESIS
Resumo:
The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. Since their discovery full-length, RAG1 and RAG2 have been difficult to purify, and core derivatives are shown to be most active when purified from adherent 293-T cells. However, the protein yield from adherent 293-T cells is limited. Here we develop a human suspension cell purification and change the expression vector to boost RAG production 6-fold. We use these purified RAG proteins to investigate V(D)J recombination on a mechanistic single molecule level. As a result, we are able to measure the binding statistics (dwell times and binding energies) of the initial RAG binding events with or without its co-factor high mobility group box protein 1 (HMGB1), and to characterize synapse formation at the single-molecule level yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage upon forming the synapse. We then go on to investigate HMGB1 further by measuring it compact single DNA molecules. We observed concentration dependent DNA compaction, differential DNA compaction depending on the divalent cation type, and found that at a particular HMGB1 concentration the percentage of DNA compacted is conserved across DNA lengths. Lastly, we investigate another HMGB protein called TFAM, which is essential for packaging the mitochondrial genome. We present crystal structures of TFAM bound to the heavy strand promoter 1 (HSP1) and to nonspecific DNA. We show TFAM dimerization is dispensable for DNA bending and transcriptional activation, but is required for mtDNA compaction. We propose that TFAM dimerization enhances mtDNA compaction by promoting looping of mtDNA.
Resumo:
This thesis presents a set of novel methods to biaxially package planar structures by folding and wrapping. The structure is divided into strips connected by folds that can slip during wrapping to accommodate material thickness. These packaging schemes are highly efficient, with theoretical packaging efficiencies approaching 100%. Packaging tests on meter-scale physical models have demonstrated packaging efficiencies of up to 83%. These methods avoid permanent deformation of the structure, allowing an initially flat structure to be deployed to a flat state.
Also presented are structural architectures and deployment schemes that are compatible with these packaging methods. These structural architectures use either in-plane pretension -- suitable for membrane structures -- or out-of-plane bending stiffness to resist loading. Physical models are constructed to realize these structural architectures. The deployment of these types of structures is shown to be controllable and repeatable by conducting experiments on lab-scale models.
These packaging methods, structural architectures, and deployment schemes are applicable to a variety of spacecraft structures such as solar power arrays, solar sails, antenna arrays, and drag sails; they have the potential to enable larger variants of these structures while reducing the packaging volume required. In this thesis, these methods are applied to the preliminary structural design of a space solar power satellite. This deployable spacecraft, measuring 60 m x 60 m, can be packaged into a cylinder measuring 1.5 m in height and 1 m in diameter. It can be deployed to a flat configuration, where it acts as a stiff lightweight support framework for multifunctional tiles that collect sunlight, generate electric power, and transmit it to a ground station on Earth.
Resumo:
With the size of transistors approaching the sub-nanometer scale and Si-based photonics pinned at the micrometer scale due to the diffraction limit of light, we are unable to easily integrate the high transfer speeds of this comparably bulky technology with the increasingly smaller architecture of state-of-the-art processors. However, we find that we can bridge the gap between these two technologies by directly coupling electrons to photons through the use of dispersive metals in optics. Doing so allows us to access the surface electromagnetic wave excitations that arise at a metal/dielectric interface, a feature which both confines and enhances light in subwavelength dimensions - two promising characteristics for the development of integrated chip technology. This platform is known as plasmonics, and it allows us to design a broad range of complex metal/dielectric systems, all having different nanophotonic responses, but all originating from our ability to engineer the system surface plasmon resonances and interactions. In this thesis, we demonstrate how plasmonics can be used to develop coupled metal-dielectric systems to function as tunable plasmonic hole array color filters for CMOS image sensing, visible metamaterials composed of coupled negative-index plasmonic coaxial waveguides, and programmable plasmonic waveguide network systems to serve as color routers and logic devices at telecommunication wavelengths.
Resumo:
The degeneration of the outer retina usually causes blindness by affecting the photoreceptor cells. However, the ganglion cells, which consist of optic nerves, on the middle and inner retina layers are often intact. The retinal implant, which can partially restore vision by electrical stimulation, soon becomes a focus for research. Although many groups worldwide have spent a lot of effort on building devices for retinal implant, current state-of-the-art technologies still lack a reliable packaging scheme for devices with desirable high-density multi-channel features. Wireless flexible retinal implants have always been the ultimate goal for retinal prosthesis. In this dissertation, the reliable packaging scheme for a wireless flexible parylene-based retinal implants has been well developed. It can not only provide stable electrical and mechanical connections to the high-density multi-channel (1000+ channels on 5 mm × 5 mm chip area) IC chips, but also survive for more than 10 years in the human body with corrosive fluids.
The device is based on a parylene-metal-parylene sandwich structure. In which, the adhesion between the parylene layers and the metals embedded in the parylene layers have been studied. Integration technology for high-density multi-channel IC chips has also been addressed and tested with dummy and real 268-channel and 1024-channel retinal IC chips. In addition, different protection schemes have been tried in application to IC chips and discrete components to gain the longest lifetime. The effectiveness has been confirmed by the accelerated and active lifetime soaking test in saline solution. Surgical mockups have also been designed and successfully implanted inside dog's and pig's eyes. Additionally, the electrodes used to stimulate the ganglion cells have been modified to lower the interface impedance and shaped to better fit the retina. Finally, all the developed technologies have been applied on the final device with a dual-metal-layer structure.
Resumo:
Mitochondria contain a 16.6 kb circular genome encoding 13 proteins as well as mitochondrial tRNAs and rRNAs. Copies of the genome are organized into nucleoids containing both DNA and proteins, including the machinery required for mtDNA replication and transcription. Although mtDNA integrity is essential for cellular and organismal viability, regulation of proliferation of the mitochondrial genome is poorly understood. To elucidate the mechanisms behind this, we chose to study the interplay between mtDNA copy number and the proteins involved in mitochondrial fusion, another required function in cells. Strikingly, we found that mouse embryonic fibroblasts lacking fusion also had a mtDNA copy number deficit. To understand this phenomenon further, we analyzed the binding of mitochondrial transcription factor A, whose role in transcription, replication, and packaging of the genome is well-established and crucial for cellular maintenance. Using ChIP-seq, we were able to detect largely uniform, non-specific binding across the genome, with no occupancy in the known specific binding sites in the regulatory region. We did detect a single binding site directly upstream of a known origin of replication, suggesting that TFAM may play a direct role in replication. Finally, although TFAM has been previously shown to localize to the nuclear genome, we found no evidence for such binding sites in our system.
To further understand the regulation of mtDNA by other proteins, we analyzed publicly available ChIP-seq datasets from ENCODE, modENCODE, and mouseENCODE for evidence of nuclear transcription factor binding to the mitochondrial genome. We identified eight human transcription factors and three mouse transcription factors that demonstrated binding events with the classical strand asymmetrical morphology of classical binding sites. ChIP-seq is a powerful tool for understanding the interactions between proteins and the mitochondrial genome, and future studies promise to further the understanding of how mtDNA is regulated within the nucleoid.
Resumo:
Soft hierarchical materials often present unique functional properties that are sensitive to the geometry and organization of their micro- and nano-structural features across different lengthscales. Carbon Nanotube (CNT) foams are hierarchical materials with fibrous morphology that are known for their remarkable physical, chemical and electrical properties. Their complex microstructure has led them to exhibit intriguing mechanical responses at different length-scales and in different loading regimes. Even though these materials have been studied for mechanical behavior over the past few years, their response at high-rate finite deformations and the influence of their microstructure on bulk mechanical behavior and energy dissipative characteristics remain elusive.
In this dissertation, we study the response of aligned CNT foams at the high strain-rate regime of 102 - 104 s-1. We investigate their bulk dynamic response and the fundamental deformation mechanisms at different lengthscales, and correlate them to the microstructural characteristics of the foams. We develop an experimental platform, with which to study the mechanics of CNT foams in high-rate deformations, that includes direct measurements of the strain and transmitted forces, and allows for a full field visualization of the sample’s deformation through high-speed microscopy.
We synthesize various CNT foams (e.g., vertically aligned CNT (VACNT) foams, helical CNT foams, micro-architectured VACNT foams and VACNT foams with microscale heterogeneities) and show that the bulk functional properties of these materials are highly tunable either by tailoring their microstructure during synthesis or by designing micro-architectures that exploit the principles of structural mechanics. We also develop numerical models to describe the bulk dynamic response using multiscale mass-spring models and identify the mechanical properties at length scales that are smaller than the sample height.
The ability to control the geometry of microstructural features, and their local interactions, allows the creation of novel hierarchical materials with desired functional properties. The fundamental understanding provided by this work on the key structure-function relations that govern the bulk response of CNT foams can be extended to other fibrous, soft and hierarchical materials. The findings can be used to design materials with tailored properties for different engineering applications, like vibration damping, impact mitigation and packaging.
Resumo:
An exciting frontier in quantum information science is the integration of otherwise "simple'' quantum elements into complex quantum networks. The laboratory realization of even small quantum networks enables the exploration of physical systems that have not heretofore existed in the natural world. Within this context, there is active research to achieve nanoscale quantum optical circuits, for which atoms are trapped near nano-scopic dielectric structures and "wired'' together by photons propagating through the circuit elements. Single atoms and atomic ensembles endow quantum functionality for otherwise linear optical circuits and thereby enable the capability of building quantum networks component by component. Toward these goals, we have experimentally investigated three different systems, from conventional to rather exotic systems : free-space atomic ensembles, optical nano fibers, and photonics crystal waveguides. First, we demonstrate measurement-induced quadripartite entanglement among four quantum memories. Next, following the landmark realization of a nanofiber trap, we demonstrate the implementation of a state-insensitive, compensated nanofiber trap. Finally, we reach more exotic systems based on photonics crystal devices. Beyond conventional topologies of resonators and waveguides, new opportunities emerge from the powerful capabilities of dispersion and modal engineering in photonic crystal waveguides. We have implemented an integrated optical circuit with a photonics crystal waveguide capable of both trapping and interfacing atoms with guided photons, and have observed the collective effect, superradiance, mediated by the guided photons. These advances provide an important capability for engineered light-matter interactions, enabling explorations of novel quantum transport and quantum many-body phenomena.
Resumo:
Paralysis is a debilitating condition afflicting millions of people across the globe, and is particularly deleterious to quality of life when motor function of the legs is severely impaired or completely absent. Fortunately, spinal cord stimulation has shown great potential for improving motor function after spinal cord injury and other pathological conditions. Many animal studies have shown stimulation of the neural networks in the spinal cord can improve motor ability so dramatically that the animals can even stand and step after a complete spinal cord transaction.
This thesis presents work to successfully provide a chronically implantable device for rats that greatly enhances the ability to control the site of spinal cord stimulation. This is achieved through the use of a parylene-C based microelectrode array, which enables a density of stimulation sites unattainable with conventional wire electrodes. While many microelectrode devices have been proposed in the past, the spinal cord is a particularly challenging environment due to the bending and movement it undergoes in a live animal. The developed microelectrode array is the first to have been implanted in vivo while retaining functionality for over a month. In doing so, different neural pathways can be selectively activated to facilitate standing and stepping in spinalized rats using various electrode combinations, and important differences in responses are observed.
An engineering challenge for the usability of any high density electrode array is connecting the numerous electrodes to a stimulation source. This thesis develops several technologies to address this challenge, beginning with a fully passive implant that uses one wire per electrode to connect to an external stimulation source. The number of wires passing through the body and the skin proved to be a hazard for the health of the animal, so a multiplexed implant was devised in which active electronics reduce the number of wires. Finally, a fully wireless implant was developed. As these implants are tested in vivo, encapsulation is of critical importance to retain functionality in a chronic experiment, especially for the active implants, and it was achieved without the use of costly ceramic or metallic hermetic packaging. Active implants were built that retained functionality 8 weeks after implantation, and achieved stepping in spinalized rats after just 8-10 days, which is far sooner than wire-based electrical stimulation has achieved in prior work.