2 resultados para Pattern recognition systems.

em CaltechTHESIS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new geometry-independent state - a traveling-wave wall state - is proposed as the mechanism whereby which the experimentally observed wall-localized states in rotating Rayleigh-Bénard convection systems preempt the bulk state at large rotation rates. Its properties are calculated for the illustrative case of free-slip top and bottom boundary conditions. At small rotation rates, this new wall state is found to disappear. A detailed study of the dynamics of the wall state and the bulk state in the transition region where this disappearance occurs is conducted using a Swift-Hohenberg model system. The Swift-Hohenberg model, with appropriate reflection-symmetry- breaking boundary conditions, is also shown to exhibit traveling-wave wall states, further demonstrating that traveling-wave wall states are a generic feature of nonequilibrium pattern-forming systems. A numerical code for the Swift-Hohenberg model in an annular geometry was written and used to investigate the dynamics of rotating Rayleigh-Bénard convection systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a biologically plausible model of an attentional mechanism for forming position- and scale-invariant representations of objects in the visual world. The model relies on a set of control neurons to dynamically modify the synaptic strengths of intra-cortical connections so that information from a windowed region of primary visual cortex (Vl) is selectively routed to higher cortical areas. Local spatial relationships (i.e., topography) within the attentional window are preserved as information is routed through the cortex, thus enabling attended objects to be represented in higher cortical areas within an object-centered reference frame that is position and scale invariant. The representation in V1 is modeled as a multiscale stack of sample nodes with progressively lower resolution at higher eccentricities. Large changes in the size of the attentional window are accomplished by switching between different levels of the multiscale stack, while positional shifts and small changes in scale are accomplished by translating and rescaling the window within a single level of the stack. The control signals for setting the position and size of the attentional window are hypothesized to originate from neurons in the pulvinar and in the deep layers of visual cortex. The dynamics of these control neurons are governed by simple differential equations that can be realized by neurobiologically plausible circuits. In pre-attentive mode, the control neurons receive their input from a low-level "saliency map" representing potentially interesting regions of a scene. During the pattern recognition phase, control neurons are driven by the interaction between top-down (memory) and bottom-up (retinal input) sources. The model respects key neurophysiological, neuroanatomical, and psychophysical data relating to attention, and it makes a variety of experimentally testable predictions.