6 resultados para Passive part of stance
em CaltechTHESIS
Resumo:
In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.
A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.
In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.
A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.
Resumo:
Because so little is known about the structure of membrane proteins, an attempt has been made in this work to develop techniques by which to model them in three dimensions. The procedures devised rely heavily upon the availability of several sequences of a given protein. The modelling procedure is composed of two parts. The first identifies transmembrane regions within the protein sequence on the basis of hydrophobicity, β-turn potential, and the presence of certain amino acid types, specifically, proline and basic residues. The second part of the procedure arranges these transmembrane helices within the bilayer based upon the evolutionary conservation of their residues. Conserved residues are oriented toward other helices and variable residues are positioned to face the surrounding lipids. Available structural information concerning the protein's helical arrangement, including the lengths of interhelical loops, is also taken into account. Rhodopsin, band 3, and the nicotinic acetylcholine receptor have all been modelled using this methodology, and mechanisms of action could be proposed based upon the resulting structures.
Specific residues in the rhodopsin and iodopsin sequences were identified, which may regulate the proteins' wavelength selectivities. A hinge-like motion of helices M3, M4, and M5 with respect to the rest of the protein was proposed to result in the activation of transducin, the G-protein associated with rhodopsin. A similar mechanism is also proposed for signal transduction by the muscarinic acetylcholine and β-adrenergic receptors.
The nicotinic acetylcholine receptor was modelled with four trans-membrane helices per subunit and with the five homologous M2 helices forming the cation channel. Putative channel-lining residues were identified and a mechanism of channel-opening based upon the concerted, tangential rotation of the M2 helices was proposed.
Band 3, the anion exchange protein found in the erythrocyte membrane, was modelled with 14 transmembrane helices. In general the pathway of anion transport can be viewed as a channel composed of six helices that contains a single hydrophobic restriction. This hydrophobic region will not allow the passage of charged species, unless they are part of an ion-pair. An arginine residue located near this restriction is proposed to be responsible for anion transport. When ion-paired with a transportable anion it rotates across the barrier and releases the anion on the other side of the membrane. A similar process returns it to its original position. This proposed mechanism, based on the three-dimensional model, can account for the passive, electroneutral, anion exchange observed for band 3. Dianions can be transported through a similar mechanism with the additional participation of a histidine residue. Both residues are located on M10.
Resumo:
The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.
In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.
Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.
In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.
Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.
Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.
Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.
Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.
Resumo:
The initial objective of Part I was to determine the nature of upper mantle discontinuities, the average velocities through the mantle, and differences between mantle structure under continents and oceans by the use of P'dP', the seismic core phase P'P' (PKPPKP) that reflects at depth d in the mantle. In order to accomplish this, it was found necessary to also investigate core phases themselves and their inferences on core structure. P'dP' at both single stations and at the LASA array in Montana indicates that the following zones are candidates for discontinuities with varying degrees of confidence: 800-950 km, weak; 630-670 km, strongest; 500-600 km, strong but interpretation in doubt; 350-415 km, fair; 280-300 km, strong, varying in depth; 100-200 km, strong, varying in depth, may be the bottom of the low-velocity zone. It is estimated that a single station cannot easily discriminate between asymmetric P'P' and P'dP' for lead times of about 30 sec from the main P'P' phase, but the LASA array reduces this uncertainty range to less than 10 sec. The problems of scatter of P'P' main-phase times, mainly due to asymmetric P'P', incorrect identification of the branch, and lack of the proper velocity structure at the velocity point, are avoided and the analysis shows that one-way travel of P waves through oceanic mantle is delayed by 0.65 to 0.95 sec relative to United States mid-continental mantle.
A new P-wave velocity core model is constructed from observed times, dt/dΔ's, and relative amplitudes of P'; the observed times of SKS, SKKS, and PKiKP; and a new mantle-velocity determination by Jordan and Anderson. The new core model is smooth except for a discontinuity at the inner-core boundary determined to be at a radius of 1215 km. Short-period amplitude data do not require the inner core Q to be significantly lower than that of the outer core. Several lines of evidence show that most, if not all, of the arrivals preceding the DF branch of P' at distances shorter than 143° are due to scattering as proposed by Haddon and not due to spherically symmetric discontinuities just above the inner core as previously believed. Calculation of the travel-time distribution of scattered phases and comparison with published data show that the strongest scattering takes place at or near the core-mantle boundary close to the seismic station.
In Part II, the largest events in the San Fernando earthquake series, initiated by the main shock at 14 00 41.8 GMT on February 9, 1971, were chosen for analysis from the first three months of activity, 87 events in all. The initial rupture location coincides with the lower, northernmost edge of the main north-dipping thrust fault and the aftershock distribution. The best focal mechanism fit to the main shock P-wave first motions constrains the fault plane parameters to: strike, N 67° (± 6°) W; dip, 52° (± 3°) NE; rake, 72° (67°-95°) left lateral. Focal mechanisms of the aftershocks clearly outline a downstep of the western edge of the main thrust fault surface along a northeast-trending flexure. Faulting on this downstep is left-lateral strike-slip and dominates the strain release of the aftershock series, which indicates that the downstep limited the main event rupture on the west. The main thrust fault surface dips at about 35° to the northeast at shallow depths and probably steepens to 50° below a depth of 8 km. This steep dip at depth is a characteristic of other thrust faults in the Transverse Ranges and indicates the presence at depth of laterally-varying vertical forces that are probably due to buckling or overriding that causes some upward redirection of a dominant north-south horizontal compression. Two sets of events exhibit normal dip-slip motion with shallow hypocenters and correlate with areas of ground subsidence deduced from gravity data. Several lines of evidence indicate that a horizontal compressional stress in a north or north-northwest direction was added to the stresses in the aftershock area 12 days after the main shock. After this change, events were contained in bursts along the downstep and sequencing within the bursts provides evidence for an earthquake-triggering phenomenon that propagates with speeds of 5 to 15 km/day. Seismicity before the San Fernando series and the mapped structure of the area suggest that the downstep of the main fault surface is not a localized discontinuity but is part of a zone of weakness extending from Point Dume, near Malibu, to Palmdale on the San Andreas fault. This zone is interpreted as a decoupling boundary between crustal blocks that permits them to deform separately in the prevalent crustal-shortening mode of the Transverse Ranges region.
Resumo:
Part I: The dynamic response of an elastic half space to an explosion in a buried spherical cavity is investigated by two methods. The first is implicit, and the final expressions for the displacements at the free surface are given as a series of spherical wave functions whose coefficients are solutions of an infinite set of linear equations. The second method is based on Schwarz's technique to solve boundary value problems, and leads to an iterative solution, starting with the known expression for the point source in a half space as first term. The iterative series is transformed into a system of two integral equations, and into an equivalent set of linear equations. In this way, a dual interpretation of the physical phenomena is achieved. The systems are treated numerically and the Rayleigh wave part of the displacements is given in the frequency domain. Several comparisons with simpler cases are analyzed to show the effect of the cavity radius-depth ratio on the spectra of the displacements.
Part II: A high speed, large capacity, hypocenter location program has been written for an IBM 7094 computer. Important modifications to the standard method of least squares have been incorporated in it. Among them are a new way to obtain the depth of shocks from the normal equations, and the computation of variable travel times for the local shocks in order to account automatically for crustal variations. The multiregional travel times, largely based upon the investigations of the United States Geological Survey, are confronted with actual traverses to test their validity.
It is shown that several crustal phases provide control enough to obtain good solutions in depth for nuclear explosions, though not all the recording stations are in the region where crustal corrections are considered. The use of the European travel times, to locate the French nuclear explosion of May 1962 in the Sahara, proved to be more adequate than previous work.
A simpler program, with manual crustal corrections, is used to process the Kern County series of aftershocks, and a clearer picture of tectonic mechanism of the White Wolf fault is obtained.
Shocks in the California region are processed automatically and statistical frequency-depth and energy depth curves are discussed in relation to the tectonics of the area.
Resumo:
Part I
These studies investigate the potential of single and double treatments with either 5-fluorodeoxyuridine of excess thymidine to induce cell division synchrony in suspension cultures of HeLa cells. The patterns of nucleic acid synthesis and cell proliferation have been analyzed in cultures thus synchronized. Several changes in cell population during long incubation with 5-fluorodeoxyuridine or excess thymidine are also described. These results are subjected to detailed evaluation in terms of the degree and quality of synchrony finally achieved.
Part II
Histones and non-histone proteins associated with interphase and metaphase chromosomes of HeLa cells have been qualitatively and quantitatively analyzed. Histones were fractionated by chromatography on Amberlite CG-50 and further characterized by analytical disc electrophoresis and amino acid analysis of each chromatographic fraction. It is concluded that histones of HeLa cells are comprised of only a small number of major components and that these components are homologous to those of other higher organisms. Of all the histones, arginine-rich histone III alone contains cysteine and can polymerize through formation of intermolecular disulfide bridges between histone III monomers.
A detailed comparison by chromatography and disc electrophoresis established that interphase and metaphase histones are made up of similar components. However, certain quantitative differences in proportions of different histones of interphase and metaphase cells are reported. Indirect evidence indicates that a certain proportion of metaphase histone III is polymerized through intermolecular disulfide links, whereas interphase histone III occurs mainly in the monomeric form.
Metaphase chromosomes are associated with an additional acid-soluble protein fraction which is absent from interphase chromosomes. All of these additional acid-soluble proteins of metaphase chromosomes are shown to be non-histones and it is concluded that the histone/DNA ratio is identical in interphase and metaphase chromosomes. The bulk of acid-soluble non-histone proteins of metaphase chromosomes were found to be polymerized through disulfide bridges; corresponding interphase non-histone proteins displayed no evidence of similar polymerization.
The factors responsible for the condensed configuration and metabolic inactivity of metaphase chromosomes are discussed in light of these findings.
The relationship between histone and DNA synthesis in nondividing differentiated chicken erythrocyte cells and in rapidly dividing undifferentiated HeLa cells is also investigated. Of all the histones, only arginine-rich histones are synthesized in mature erythrocytes. Histone synthesis in HeLa cells was studied in both unsynchronized and synchronized cultures. In HeLa cells, only part of the synthesis of all histone fractions is dependent on concurrent DNA synthesis, whereas all histones are synthesized in varying degrees even in the absence of DNA synthesis.