13 resultados para POINT-DEFECTS
em CaltechTHESIS
Resumo:
In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description.
Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems.
Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via ’classical’ molecular dynamics where the atomic motion is calculated from Newtonian mechanics with the electronic effects abstracted away into an interatomic potential function. For our purposes, a ’first principles’ approach such as DFT is useful as a classical potential is typically valid for only a portion of the phase diagram (i.e. whatever part it has been fit to). Furthermore, for extremes of temperature and pressure quantum effects become critical to accurately capture an equation of state and are very hard to capture in even complex model potentials. This requires extending the inherently zero temperature DFT to predict the finite temperature response of the system. Statistical modelling and thermodynamic integration is used to extend our results over all phases, as well as phase-coexistence regions which are at the limits of typical DFT validity. We deliver the most comprehensive and accurate equation of state that has been done for Ta. This work also lends insights that can be applied to further equation of state work in many other materials.
Resumo:
We consider the following singularly perturbed linear two-point boundary-value problem:
Ly(x) ≡ Ω(ε)D_xy(x) - A(x,ε)y(x) = f(x,ε) 0≤x≤1 (1a)
By ≡ L(ε)y(0) + R(ε)y(1) = g(ε) ε → 0^+ (1b)
Here Ω(ε) is a diagonal matrix whose first m diagonal elements are 1 and last m elements are ε. Aside from reasonable continuity conditions placed on A, L, R, f, g, we assume the lower right mxm principle submatrix of A has no eigenvalues whose real part is zero. Under these assumptions a constructive technique is used to derive sufficient conditions for the existence of a unique solution of (1). These sufficient conditions are used to define when (1) is a regular problem. It is then shown that as ε → 0^+ the solution of a regular problem exists and converges on every closed subinterval of (0,1) to a solution of the reduced problem. The reduced problem consists of the differential equation obtained by formally setting ε equal to zero in (1a) and initial conditions obtained from the boundary conditions (1b). Several examples of regular problems are also considered.
A similar technique is used to derive the properties of the solution of a particular difference scheme used to approximate (1). Under restrictions on the boundary conditions (1b) it is shown that for the stepsize much larger than ε the solution of the difference scheme, when applied to a regular problem, accurately represents the solution of the reduced problem.
Furthermore, the existence of a similarity transformation which block diagonalizes a matrix is presented as well as exponential bounds on certain fundamental solution matrices associated with the problem (1).
Resumo:
Granular crystals are compact periodic assemblies of elastic particles in Hertzian contact whose dynamic response can be tuned from strongly nonlinear to linear by the addition of a static precompression force. This unique feature allows for a wide range of studies that include the investigation of new fundamental nonlinear phenomena in discrete systems such as solitary waves, shock waves, discrete breathers and other defect modes. In the absence of precompression, a particularly interesting property of these systems is their ability to support the formation and propagation of spatially localized soliton-like waves with highly tunable properties. The wealth of parameters one can modify (particle size, geometry and material properties, periodicity of the crystal, presence of a static force, type of excitation, etc.) makes them ideal candidates for the design of new materials for practical applications. This thesis describes several ways to optimally control and tailor the propagation of stress waves in granular crystals through the use of heterogeneities (interstitial defect particles and material heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed two-dimensional granular crystals with interstitial spherical intruders and composite hexagonal packings and study their dynamic response using a combination of experimental, numerical and analytical techniques. We first investigate the interaction of defect particles with a solitary wave and utilize this fundamental knowledge in the optimal design of novel composite wave guides, shock or vibration absorbers obtained using gradient-based optimization methods.
Resumo:
This thesis details the investigations of the unconventional low-energy quasiparticle excitations in electron-type cuprate superconductors and electron-type ferrous superconductors as well as the electronic properties of Dirac fermions in graphene and three-dimensional strong topological insulators through experimental studies using spatially resolved scanning tunneling spectroscopy (STS) experiments.
Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle spectra in the electron-type cuprate La0.1Sr0.9CuO2 (La-112) TC = 43 K, are investigated experimentally. For temperature (T) less than the superconducting transition temperature (TC), and in zero field, the quasiparticle spectra of La-112 exhibits gapped behavior with two coherence peaks and no satellite features. For magnetic field measurements at T < TC, first ever observation of vortices in La-112 are reported. Moreover, pseudogap-like spectra are revealed inside the core of vortices, where superconductivity is suppressed. The intra-vortex pseudogap-like spectra are characterized by an energy gap of VPG = 8.5 ± 0.6 meV, while the inter-vortex quasiparticle spectra shows larger peak-to-peak gap values characterized by Δpk-pk(H) >VPG, and Δpk-pk (0)=12.2 ± 0.8 meV > Δpk-pk (H > 0). The quasiparticle spectra are found to be gapped at all locations up to the highest magnetic field examined (H = 6T) and reveal an apparent low-energy cutoff at the VPG energy scale.
Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle spectra in the electron-type "122" iron-based Ba(Fe1-xCox)2As2 are investigated for multiple doping levels (x = 0.06, 0.08, 0.12 with TC= 14 K, 24 K, and 20 K). For all doping levels and the T < TC, two-gap superconductivity is observed. Both superconducting gaps decrease monotonically in size with increasing temperature and disappear for temperatures above the superconducting transition temperature, TC. Magnetic resonant modes that follow the temperature dependence of the superconducting gaps have been identified in the tunneling quasiparticle spectra. Together with quasiparticle interference (QPI) analysis and magnetic field studies, this provides strong evidence for two-gap sign-changing s-wave superconductivity.
Additionally spatial scanning tunneling spectroscopic studies are performed on mechanically exfoliated graphene and chemical vapor deposition grown graphene. In all cases lattice strain exerts a strong influence on the electronic properties of the sample. In particular topological defects give rise to pseudomagnetic fields (B ~ 50 Tesla) and charging effects resulting in quantized conductance peaks associated with the integer and fractional Quantum Hall States.
Finally, spectroscopic studies on the 3D-STI, Bi2Se3 found evidence of impurity resonance in the surface state. The impurities are in the unitary limit and the spectral resonances are localized spatially to within ~ 0.2 nm of the impurity. The spectral weight of the impurity resonance diverges as the Fermi energy approaches the Dirac point and the rapid recovery of the surface state suggests robust topological protection against perturbations that preserve time reversal symmetry.
Resumo:
This thesis describes the expansion and improvement of the iterative in situ click chemistry OBOC peptide library screening technology. Previous work provided a proof-of-concept demonstration that this technique was advantageous for the production of protein-catalyzed capture (PCC) agents that could be used as drop-in replacements for antibodies in a variety of applications. Chapter 2 describes the technology development that was undertaken to optimize this screening process and make it readily available for a wide variety of targets. This optimization is what has allowed for the explosive growth of the PCC agent project over the past few years.
These technology improvements were applied to the discovery of PCC agents specific for single amino acid point mutations in proteins, which have many applications in cancer detection and treatment. Chapter 3 describes the use of a general all-chemical epitope-targeting strategy that can focus PCC agent development directly to a site of interest on a protein surface. This technique utilizes a chemically-synthesized chunk of the protein, called an epitope, substituted with a click handle in combination with the OBOC in situ click chemistry libraries in order to focus ligand development at a site of interest. Specifically, Chapter 3 discusses the use of this technique in developing a PCC agent specific for the E17K mutation of Akt1. Chapter 4 details the expansion of this ligand into a mutation-specific inhibitor, with applications in therapeutics.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.
Resumo:
DC and transient measurements of space-charge-limited currents through alloyed and symmetrical n^+ν n^+ structures made of nominally 75 kΩcm ν-type silicon are studied before and after the introduction of defects by 14 MeV neutron radiation. In the transient measurements, the current response to a large turn-on voltage step is analyzed. Right after the voltage step is applied, the current transient reaches a value which we shall call "initial current" value. At longer times, the transient current decays from the initial current value if traps are present.
Before the irradiation, the initial current density-voltage characteristics J(V) agree quantitatively with the theory of trap-free space-charge-limited current in solids. We obtain for the electron mobility a temperature dependence which indicates that scattering due to impurities is weak. This is expected for the high purity silicon used. The drift velocity-field relationships for electrons at room temperature and 77°K, derived from the initial current density-voltage characteristics, are shown to fit the relationships obtained with other methods by other workers. The transient current response for t > 0 remains practically constant at the initial value, thus indicating negligible trapping.
Measurement of the initial (trap-free) current density-voltage characteristics after the irradiation indicates that the drift velocity-field relationship of electrons in silicon is affected by the radiation only at low temperature in the low field range. The effect is not sufficiently pronounced to be readily analyzed and no formal description of it is offered. In the transient response after irradiation for t > 0, the current decays from its initial value, thus revealing the presence of traps. To study these traps, in addition to transient measurements, the DC current characteristics were measured and shown to follow the theory of trap-dominated space-charge-limited current in solids. This theory was applied to a model consisting of two discrete levels in the forbidden band gap. Calculations and experiments agreed and the capture cross-sections of the trapping levels were obtained. This is the first experimental case known to us through which the flow of space-charge-limited current is so simply representable.
These results demonstrate the sensitivity of space-charge-limited current flow as a tool to detect traps and changes in the drift velocity-field relationship of carriers caused by radiation. They also establish that devices based on the mode of space-charge-limited current flow will be affected considerably by any type of radiation capable of introducing traps. This point has generally been overlooked so far, but is obviously quite significant.
Resumo:
The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases.
Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of "integer" (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases.
Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30 years ago, it can still produce novel phenomena. Of much recent interest is the existence of non-Abelian anyons in FQHE systems. Though it is possible to construct wave functions that realize such particles, whether these wavefunctions are the ground state is a difficult quantitative question that must be answered numerically. In this thesis I describe progress using a density-matrix renormalization group algorithm to study a bilayer system thought to host non-Abelian anyons. We find phase diagrams in terms of experimentally relevant parameters, and also find evidence for a non-Abelian phase known as the "interlayer Pfaffian".
Resumo:
Measurements and modeling of Cu2Se, Ag2Se, and Cu2S show that superionic conductors have great potential as thermoelectric materials. Cu2Se and Ag2Se are predicted to reach a zT of 1.2 at room temperature if their carrier concentrations can be reduced, and Cu-vacancy doped Cu2S reaches a maximum zT of 1.7 at 1000 K. Te-doped Ag2Se achieves a zT of 1.2 at 520 K, and could reach a zT of 1.7 if its carrier concentration could be reduced. However, superionic conductors tend to have high carrier concentrations due to the presence of metal defects. The carrier concentration has been found to be difficult to reduce by altering the defect concentration, therefore materials that are underdoped relative to the optimum carrier concentration are easier to optimize. The results of Te-doping of Ag2Se show that reducing the carrier concentration is possible by reducing the maximum Fermi level in the material.
Two new methods for analyzing thermoelectric transport data were developed. The first involves scaling the temperature-dependent transport data according to the temperature dependences expected of a single parabolic band model and using all of the scaled data to perform a single parabolic band analysis, instead of being restricted to using one data point per sample at a fixed temperature. This allows for a more efficient use of the transport data. The second involves scaling only the Seebeck coefficient and electrical conductivity. This allows for an estimate of the quality factor (and therefore the maximum zT in the material) without using Hall effect data, which are not always available due to time and budget constraints and are difficult to obtain in high-resistivity materials. Methods for solving the coherent potential approximation effective medium equations were developed in conjunction with measurements of the resistivity tensor elements of composite materials. This allows the electrical conductivity and mobility of each phase in the composite to be determined from measurements of the bulk. This points out a new method for measuring the pure-phase electrical properties in impure materials, for measuring the electrical properties of unknown phases in composites, and for quantifying the effects of quantum interactions in composites.
Resumo:
The process of prophage integration by phage λ and the function and structure of the chromosomal elements required for λ integration have been studied with the use of λ deletion mutants. Since attφ, the substrate of the integration enzymes, is not essential for λ growth, and since attφ resides in a portion of the λ chromosome which is not necessary for vegetative growth, viable λ deletion mutants were isolated and examined to dissect the structure of attφ.
Deletion mutants were selected from wild type populations by treating the phage under conditions where phage are inactivated at a rate dependent on the DNA content of the particles. A number of deletion mutants were obtained in this way, and many of these mutants proved to have defects in integration. These defects were defined by analyzing the properties of Int-promoted recombination in these att mutants.
The types of mutants found and their properties indicated that attφ has three components: a cross-over point which is bordered on either side by recognition elements whose sequence is specifically required for normal integration. The interactions of the recognition elements in Int-promoted recombination between att mutants was examined and proved to be quite complex. In general, however, it appears that the λ integration system can function with a diverse array of mutant att sites.
The structure of attφ was examined by comparing the genetic properties of various att mutants with their location in the λ chromosome. To map these mutants, the techniques of heteroduplex DNA formation and electron microscopy were employed. It was found that integration cross-overs occur at only one point in attφ and that the recognition sequences that direct the integration enzymes to their site of action are quite small, less than 2000 nucleotides each. Furthermore, no base pair homology was detected between attφ and its bacterial analog, attB. This result clearly demonstrates that λ integration can occur between chromosomes which have little, if any, homology. In this respect, λ integration is unique as a system of recombination since most forms of generalized recombination require extensive base pair homology.
An additional study on the genetic and physical distances in the left arm of the λ genome was described. Here, a large number of conditional lethal nonsense mutants were isolated and mapped, and a genetic map of the entire left arm, comprising a total of 18 genes, was constructed. Four of these genes were discovered in this study. A series of λdg transducing phages was mapped by heteroduplex electron microscopy and the relationship between physical and genetic distances in the left arm was determined. The results indicate that recombination frequency in the left arm is an accurate reflection of physical distances, and moreover, there do not appear to be any undiscovered genes in this segment of the genome.
Resumo:
The re-ignition characteristics (variation of re-ignition voltage with time after current zero) of short alternating current arcs between plane brass electrodes in air were studied by observing the average re-ignition voltages on the screen of a cathode-ray oscilloscope and controlling the rates of rise of voltage by varying the shunting capacitance and hence the natural period of oscillation of the reactors used to limit the current. The shape of these characteristics and the effects on them of varying the electrode separation, air pressure, and current strength were determined.
The results show that short arc spaces recover dielectric strength in two distinct stages. The first stage agrees in shape and magnitude with a previously developed theory that all voltage is concentrated across a partially deionized space charge layer which increases its breakdown voltage with diminishing density of ionization in the field-tree space. The second stage appears to follow complete deionization by the electric field due to displacement of the field-free region by the space charge layer, its magnitude and shape appearing to be due simply to increase in gas density due to cooling. Temperatures calculated from this second stage and ion densities determined from the first stage by means of the space charge equation and an extrapolation of the temperature curve are consistent with recent measurements of arc value by other methods. Analysis or the decrease with time of the apparent ion density shows that diffusion alone is adequate to explain the results and that volume recombination is not. The effects on the characteristics of variations in the parameters investigated are found to be in accord with previous results and with the theory if deionization mainly by diffusion be assumed.
Resumo:
Suppose that AG is a solvable group with normal subgroup G where (|A|, |G|) = 1. Assume that A is a class two odd p group all of whose irreducible representations are isomorphic to subgroups of extra special p groups. If pc ≠ rd + 1 for any c = 1, 2 and any prime r where r2d+1 divides |G| and if CG(A) = 1 then the Fitting length of G is bounded by the power of p dividing |A|.
The theorem is proved by applying a fixed point theorem to a reduction of the Fitting series of G. The fixed point theorem is proved by reducing a minimal counter example. IF R is an extra spec r subgroup of G fixed by A1, a subgroup of A, where A1 centralizes D(R), then all irreducible characters of A1R which are nontrivial on Z(R) are computed. All nonlinear characters of a class two p group are computed.
Resumo:
In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.
The following is my formulation of the Cesari fixed point method:
Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.
Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:
(i) Py = PWy.
(ii) y = (P + (I - P)W)y.
Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:
(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).
(2) The function y just defined is continuous from PГ into B.
(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.
Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).
The three theorems of this thesis can now be easily stated.
Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.
Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:
(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖
(2)P2Г is convex.
Then i(Г, W, P1) = i(Г, W, P2).
Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).
Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.