3 resultados para PHOTOMETRIC PLANE
em CaltechTHESIS
Resumo:
The experimental consequence of Regge cuts in the angular momentum plane are investigated. The principle tool in the study is the set of diagrams originally proposed by Amati, Fubini, and Stanghellini. Mandelstam has shown that the AFS cuts are actually cancelled on the physical sheet, but they may provide a useful guide to the properties of the real cuts. Inclusion of cuts modifies the simple Regge pole predictions for high-energy scattering data. As an example, an attempt is made to fit high energy elastic scattering data for pp, ṗp, π±p, and K±p, by replacing the Igi pole by terms representing the effect of a Regge cut. The data seem to be compatible with either a cut or the Igi pole.
Resumo:
The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.
Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.
We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM∗ with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.
By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.
Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.
A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.
Resumo:
Large plane deformations of thin elastic sheets of neo-Hookean material are considered and a method of successive substitutions is developed to solve problems within the two-dimensional theory of finite plane stress. The first approximation is determined by linear boundary value problems on two harmonic functions, and it is approached asymptotically at very large extensions in the plane of the sheet. The second and higher approximations are obtained by solving Poisson equations. The method requires modification when the membrane has a traction-free edge.
Several problems are treated involving infinite sheets under uniform biaxial stretching at infinity. First approximations are obtained when a circular or elliptic inclusion is present and when the sheet has a circular or elliptic hole, including the limiting cases of a line inclusion and a straight crack or slit. Good agreement with exact solutions is found for circularly symmetric deformations. Other examples discuss the stretching of a short wide strip, the deformation near a boundary corner which is traction-free, and the application of a concentrated load to a boundary point.