2 resultados para PERMETHYLSCANDOCENE

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cp*_2Sc-H reacts with H_2 and CO at -78°C to yield Cp*_2ScOCH_3. A stepwise reduction of CO to an alkoxide is observed when CO reacts with Cp*_2ScC_6H_4CH_3-p to give the η^2-acyl Cp*_2Sc(CO)C_6H_4CH_3-p, which then reacts with H_2 to produce Cp*_2ScOCH_2C_6H_4CH_3-p. Cp*_2ScCH_3 and Cp*_2ScH(THF) react with CO to give unchar- uncharacterizable products. Cp*_2ScH and Cp*_2ScCH_3 react with Cp_2MCO (M = Mo, W) to give scandoxycarbenes, Cp_2M=C(CH_3)OScCp*_2, while a wide variety of Cp*_2ScX (X = H, CH_3, N(CH_3)_2, CH_2CH_2C_6H_5) reacts with CpM(CO)_2 (M = Co, Rh) to yield similar carbene complexes. An x-ray crystal structure determination of Cp(CO)Co=C(CH_3)- OScCp*_2 revealed a µ^2: η^1, η^1 carbonyl interaction between the Co-CO and Sc.

CO_2 inserts cleanly into Sc-phenyl bonds at -78°C to produce a carboxylate complex, Cp*_2Sc(O_2C)C_6H_4CH_3-p. The structure of this compound was determined by x-ray crystallographic techniques.

Excess C_2H_2 reacts with Cp*_2ScR (R = H, alkyl, aryl, alkenyl, alkynyl, amide) at temperatures below -78°C to form the alkynyl species Cp*_2Sc-C≡C-H, which then reacts with the remaining acetylene to form polyacetylene. Cp*_2Sc-C≡C-H further reacts to yield Cp*_2sc-C≡C-ScCp*_2. This unusual C_2 bridged dimer was characterized by x-ray crystallography.

Attempts were made to model the C-N bond breaking step of hydrodenitrogenation by synthesizing Cp*_2TaH(η^2-H_2C=N(C_6H_4X)) and studying its rearrangement to Cp*_2Ta(=N(C_6H_4X))(CH_3). The 1,2 addition/elimination reactions of Cp*_2Ta(η^2- H_2C=N(CH_3)H and Cp*_2Ta(=X)H (X=O, S, NH, N(C_6H_5)) were investigated. Cp*_2Ta(=NH)H was found to react with D_2 to give Cp*_2Ta(=ND)H, implying a nonsymmetric amide-dihydride intermediate for the addition/elimination process. Cp*_2Ta(=S)H and H_2O equilibrate with Cp*_2Ta(=O)H and H_2S, which allowed determination of the difference in bond strengths for Ta=O and Ta=S. Ta=O was found to be approximately 41 kcals/mole stronger than Ta=S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence for the stereochemical isomerization of a variety of ansa metallocene compounds is presented. For the scandocene allyl derivatives described here, we have established that the process is promoted by a variety of salts in both ether and hydrocarbon solvents and is not accelerated by light. A plausible mechanism based on an earlier proposal by Marks, et al., is offered as an explanation of this process. It involves coordination of anions and/or donor solvents to the metal center with cation assistance to encourage metalcyclopentadienyl bond heterolysis, rotation about the Si-Cp bond of the detached cyclopentadienide and recoordination of the opposite face. Our observations in some cases of thermodynamic racemic:meso ratios under the reaction conditions commonly used for the synthesis of the metallocene chlorides suggests that the interchange is faster than metallation, such that the composition of the reaction mixture is determined by thermodynamic, not kinetic, control in these cases.

Two new ansa-scandocene alkenyl compounds react with olefins resulting in the formation of η3-allyl complexes. Kinetics and labeling experiments indicate a tuck-in intermediate on the reaction pathway; in this intermediate the metal is bound to the carbon adjacent to the silyllinker in the rear of the metallocene wedge. In contrast, reaction of permethylscandocene alkenyl compounds with olefins results, almost exclusively, in vinylic C-H bond activation. It is proposed that relieving transition state steric interactions between the cyclopentadienyl rings and the olefin by either linking the rings together or using a larger lanthanide metal may allow for olefin coordination, stabilizing the transition state for allylic σ-bond metathesis.

A selectively isotopically labeled propylene, CH2CD(13CH3), was synthesized and its polymerization was carried out at low concentration in toluene solution using isospecific metallocene catalysts. Analysis of the NMR spectra (13C, 1H, and 2H) of the resultant polymers revealed that the production of stereoerrors through chain epimerization proceeds exclusively by the tertiaryalkyl mechanism. Additionally, enantiofacial inversion of the terminally unsaturated polymer chain occurs by a non-dissociative process. The implications of these results on the mechanism of olefin polymerization with these catalysts is discussed.