2 resultados para Output-boundary regulation

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neural crest is a group of migratory, multipotent stem cells that play a crucial role in many aspects of embryonic development. This uniquely vertebrate cell population forms within the dorsal neural tube but then emigrates out and migrates long distances to different regions of the body. These cells contribute to formation of many structures such as the peripheral nervous system, craniofacial skeleton, and pigmentation of the skin. Why some neural tube cells undergo a change from neural to neural crest cell fate is unknown as is the timing of both onset and cessation of their emigration from the neural tube. In recent years, growing evidence supports an important role for epigenetic regulation as a new mechanism for controlling aspects of neural crest development. In this thesis, I dissect the roles of the de novo DNA methyltransferases (DNMTs) 3A and 3B in neural crest specification, migration and differentiation. First, I show that DNMT3A limits the spatial boundary between neural crest versus neural tube progenitors within the neuroepithelium. DNMT3A promotes neural crest specification by directly mediating repression of neural genes, like Sox2 and Sox3. Its knockdown causes ectopic Sox2 and Sox3 expression at the expense of neural crest territory. Thus, DNMT3A functions as a molecular switch, repressing neural to favor neural crest cell fate. Second, I find that DNMT3B restricts the temporal window during which the neural crest cells emigrate from the dorsal neural tube. Knockdown of DNMT3B causes an excess of neural crest emigration, by extending the time that the neural tube is competent to generate emigrating neural crest cells. In older embryos, this resulted in premature neuronal differentiation. Thus, DNMT3B regulates the duration of neural crest production by the neural tube and the timing of their differentiation. My results in avian embryos suggest that de novo DNA methylation, exerted by both DNMT3A and DNMT3B, plays a dual role in neural crest development, with each individual paralogue apparently functioning during a distinct temporal window. The results suggest that de novo DNA methylation is a critical epigenetic mark used for cell fate restriction of progenitor cells during neural crest cell fate specification. Our discovery provides important insights into the mechanisms that determine whether a cell becomes part of the central nervous system or peripheral cell lineages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic biological systems promise to combine the spectacular diversity of biological functionality with engineering principles to design new life to address many pressing needs. As these engineered systems advance in sophistication, there is ever-greater need for customizable, situation-specific expression of desired genes. However, existing gene control platforms are generally not modular, or do not display performance requirements required for robust phenotypic responses to input signals. This work expands the capabilities of eukaryotic gene control in two important directions.

For development of greater modularity, we extend the use of synthetic self-cleaving ribozyme switches to detect changes in input protein levels and convey that information into programmed gene expression in eukaryotic cells. We demonstrate both up- and down-regulation of levels of an output transgene by more than 4-fold in response to rising input protein levels, with maximal output gene expression approaching the highest levels observed in yeast. In vitro experiments demonstrate protein-dependent ribozyme activity modulation. We further demonstrate the platform in mammalian cells. Our switch devices do not depend on special input protein activity, and can be tailored to respond to any input protein to which a suitable RNA aptamer can be developed. This platform can potentially be employed to regulate the expression of any transgene or any endogenous gene by 3’ UTR replacement, allowing for more complex cell state-specific reprogramming.

We also address an important concern with ribozyme switches, and riboswitch performance in general, their dynamic range. While riboswitches have generally allowed for versatile and modular regulation, so far their dynamic ranges of output gene modulation have been modest, generally at most 10-fold. We address this shortcoming by developing a modular genetic amplifier for near-digital control of eukaryotic gene expression. We combine ribozyme switch-mediated regulation of a synthetic TF with TF-mediated regulation of an output gene. The amplifier platform allows for as much as 20-fold regulation of output gene expression in response to input signal, with maximal expression approaching the highest levels observed in yeast, yet being tunable to intermediate and lower expression levels. EC50 values are more than 4 times lower than in previously best-performing non-amplifier ribozyme switches. The system design retains the modular-input architecture of the ribozyme switch platform, and the near-digital dynamic ranges of TF-based gene control.

Together, these developments suggest great potential for the wide applicability of these platforms for better-performing eukaryotic gene regulation, and more sophisticated, customizable reprogramming of cellular activity.