2 resultados para Optimal Protection Policy
em CaltechTHESIS
Resumo:
Government procurement of a new good or service is a process that usually includes basic research, development, and production. Empirical evidences indicate that investments in research and development (R and D) before production are significant in many defense procurements. Thus, optimal procurement policy should not be only to select the most efficient producer, but also to induce the contractors to design the best product and to develop the best technology. It is difficult to apply the current economic theory of optimal procurement and contracting, which has emphasized production, but ignored R and D, to many cases of procurement.
In this thesis, I provide basic models of both R and D and production in the procurement process where a number of firms invest in private R and D and compete for a government contract. R and D is modeled as a stochastic cost-reduction process. The government is considered both as a profit-maximizer and a procurement cost minimizer. In comparison to the literature, the following results derived from my models are significant. First, R and D matters in procurement contracting. When offering the optimal contract the government will be better off if it correctly takes into account costly private R and D investment. Second, competition matters. The optimal contract and the total equilibrium R and D expenditures vary with the number of firms. The government usually does not prefer infinite competition among firms. Instead, it prefers free entry of firms. Third, under a R and D technology with the constant marginal returns-to-scale, it is socially optimal to have only one firm to conduct all of the R and D and production. Fourth, in an independent private values environment with risk-neutral firms, an informed government should select one of four standard auction procedures with an appropriate announced reserve price, acting as if it does not have any private information.
Resumo:
The Hamilton Jacobi Bellman (HJB) equation is central to stochastic optimal control (SOC) theory, yielding the optimal solution to general problems specified by known dynamics and a specified cost functional. Given the assumption of quadratic cost on the control input, it is well known that the HJB reduces to a particular partial differential equation (PDE). While powerful, this reduction is not commonly used as the PDE is of second order, is nonlinear, and examples exist where the problem may not have a solution in a classical sense. Furthermore, each state of the system appears as another dimension of the PDE, giving rise to the curse of dimensionality. Since the number of degrees of freedom required to solve the optimal control problem grows exponentially with dimension, the problem becomes intractable for systems with all but modest dimension.
In the last decade researchers have found that under certain, fairly non-restrictive structural assumptions, the HJB may be transformed into a linear PDE, with an interesting analogue in the discretized domain of Markov Decision Processes (MDP). The work presented in this thesis uses the linearity of this particular form of the HJB PDE to push the computational boundaries of stochastic optimal control.
This is done by crafting together previously disjoint lines of research in computation. The first of these is the use of Sum of Squares (SOS) techniques for synthesis of control policies. A candidate polynomial with variable coefficients is proposed as the solution to the stochastic optimal control problem. An SOS relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function. It is shown that these results extend to arbitrary parabolic and elliptic PDEs, yielding a novel method for Uncertainty Quantification (UQ) of systems governed by partial differential constraints. Domain decomposition techniques are also made available, allowing for such problems to be solved via parallelization and low-order polynomials.
The optimization-based SOS technique is then contrasted with the Separated Representation (SR) approach from the applied mathematics community. The technique allows for systems of equations to be solved through a low-rank decomposition that results in algorithms that scale linearly with dimensionality. Its application in stochastic optimal control allows for previously uncomputable problems to be solved quickly, scaling to such complex systems as the Quadcopter and VTOL aircraft. This technique may be combined with the SOS approach, yielding not only a numerical technique, but also an analytical one that allows for entirely new classes of systems to be studied and for stability properties to be guaranteed.
The analysis of the linear HJB is completed by the study of its implications in application. It is shown that the HJB and a popular technique in robotics, the use of navigation functions, sit on opposite ends of a spectrum of optimization problems, upon which tradeoffs may be made in problem complexity. Analytical solutions to the HJB in these settings are available in simplified domains, yielding guidance towards optimality for approximation schemes. Finally, the use of HJB equations in temporal multi-task planning problems is investigated. It is demonstrated that such problems are reducible to a sequence of SOC problems linked via boundary conditions. The linearity of the PDE allows us to pre-compute control policy primitives and then compose them, at essentially zero cost, to satisfy a complex temporal logic specification.