1 resultado para Olga Snaider
em CaltechTHESIS
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Adam Mickiewicz University Repository (3)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (13)
- Aquatic Commons (12)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (15)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de Artesanías de Colombia (25)
- Biblioteca Digital de la Universidad Católica Argentina (14)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (16)
- Bibloteca do Senado Federal do Brasil (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Boston University Digital Common (2)
- Brock University, Canada (1)
- CaltechTHESIS (1)
- Cámara de Comercio de Bogotá, Colombia (3)
- CentAUR: Central Archive University of Reading - UK (22)
- Center for Jewish History Digital Collections (32)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (13)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (31)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (2)
- Harvard University (5)
- Helda - Digital Repository of University of Helsinki (12)
- Indian Institute of Science - Bangalore - Índia (8)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (10)
- Memoria Académica - FaHCE, UNLP - Argentina (12)
- Ministerio de Cultura, Spain (448)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (30)
- Queensland University of Technology - ePrints Archive (19)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (9)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad Nacional Agraria (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- SAPIENTIA - Universidade do Algarve - Portugal (6)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (3)
- Universidad Autónoma de Nuevo León, Mexico (18)
- Universidad del Rosario, Colombia (109)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (17)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (10)
- University of Michigan (5)
Resumo:
In a 1955 paper, Ky Fan, Olga Taussky, and John Todd presented discrete analogues of inequalities of Wirtinger type, and by taking limits they were able to recover the continuous inequalities. We generalize their techniques to mixed and higher derivatives and inequalities with weight functions in the integrals. We have also considered analogues of inequalities of Müller and Redheffer and have used these inequalities to derive a necessary and sufficient condition on ordered pairs of numbers so that the first number is the square norm of the kth derivative of some periodic function and the second number is the square norm of the mth derivative of the same periodic function.