2 resultados para Old Latin metrics

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A classical question in combinatorics is the following: given a partial Latin square $P$, when can we complete $P$ to a Latin square $L$? In this paper, we investigate the class of textbf{$epsilon$-dense partial Latin squares}: partial Latin squares in which each symbol, row, and column contains no more than $epsilon n$-many nonblank cells. Based on a conjecture of Nash-Williams, Daykin and H"aggkvist conjectured that all $frac{1}{4}$-dense partial Latin squares are completable. In this paper, we will discuss the proof methods and results used in previous attempts to resolve this conjecture, introduce a novel technique derived from a paper by Jacobson and Matthews on generating random Latin squares, and use this novel technique to study $ epsilon$-dense partial Latin squares that contain no more than $delta n^2$ filled cells in total.

In Chapter 2, we construct completions for all $ epsilon$-dense partial Latin squares containing no more than $delta n^2$ filled cells in total, given that $epsilon < frac{1}{12}, delta < frac{ left(1-12epsilonright)^{2}}{10409}$. In particular, we show that all $9.8 cdot 10^{-5}$-dense partial Latin squares are completable. In Chapter 4, we augment these results by roughly a factor of two using some probabilistic techniques. These results improve prior work by Gustavsson, which required $epsilon = delta leq 10^{-7}$, as well as Chetwynd and H"aggkvist, which required $epsilon = delta = 10^{-5}$, $n$ even and greater than $10^7$.

If we omit the probabilistic techniques noted above, we further show that such completions can always be found in polynomial time. This contrasts a result of Colbourn, which states that completing arbitrary partial Latin squares is an NP-complete task. In Chapter 3, we strengthen Colbourn's result to the claim that completing an arbitrary $left(frac{1}{2} + epsilonright)$-dense partial Latin square is NP-complete, for any $epsilon > 0$.

Colbourn's result hinges heavily on a connection between triangulations of tripartite graphs and Latin squares. Motivated by this, we use our results on Latin squares to prove that any tripartite graph $G = (V_1, V_2, V_3)$ such that begin{itemize} item $|V_1| = |V_2| = |V_3| = n$, item For every vertex $v in V_i$, $deg_+(v) = deg_-(v) geq (1- epsilon)n,$ and item $|E(G)| > (1 - delta)cdot 3n^2$ end{itemize} admits a triangulation, if $epsilon < frac{1}{132}$, $delta < frac{(1 -132epsilon)^2 }{83272}$. In particular, this holds when $epsilon = delta=1.197 cdot 10^{-5}$.

This strengthens results of Gustavsson, which requires $epsilon = delta = 10^{-7}$.

In an unrelated vein, Chapter 6 explores the class of textbf{quasirandom graphs}, a notion first introduced by Chung, Graham and Wilson cite{chung1989quasi} in 1989. Roughly speaking, a sequence of graphs is called "quasirandom"' if it has a number of properties possessed by the random graph, all of which turn out to be equivalent. In this chapter, we study possible extensions of these results to random $k$-edge colorings, and create an analogue of Chung, Graham and Wilson's result for such colorings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cosmic birefringence (CB)---a rotation of photon-polarization plane in vacuum---is a generic signature of new scalar fields that could provide dark energy. Previously, WMAP observations excluded a uniform CB-rotation angle larger than a degree.

In this thesis, we develop a minimum-variance--estimator formalism for reconstructing direction-dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude improvement in sensitivity with incoming Planck data and future satellite missions. Next, we perform the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation between CMB temperature and the rotation for detecting the CB signal, for different quintessence models. We find that it may improve sensitivity in case of marginal detection, and provide an empirical handle for distinguishing details of new physics indicated by CB.

We then consider other parity-violating physics beyond standard models---in particular, a chiral inflationary-gravitational-wave background. We show that WMAP has no constraining power, while a cosmic-variance--limited experiment would be capable of detecting only a large parity violation. In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral gravity waves.

We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomogeneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with WMAP-7 data, and show that data from Planck should start approaching interesting portions of the EoR parameter space and can be used to exclude reionization tomographies with large ionized bubbles.

In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line from the EoR, we examine probability-distribution functions (PDFs) and difference PDFs of the simulated 21-cm brightness temperature, and discuss the information that can be recovered using these statistics. We find that PDFs are insensitive to details of small-scale physics, but highly sensitive to the properties of the ionizing sources and the size of ionized bubbles.

Finally, we discuss prospects for related future investigations.