9 resultados para OXIDE NANOWIRE ARRAYS

em CaltechTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The overarching theme of this thesis is mesoscale optical and optoelectronic design of photovoltaic and photoelectrochemical devices. In a photovoltaic device, light absorption and charge carrier transport are coupled together on the mesoscale, and in a photoelectrochemical device, light absorption, charge carrier transport, catalysis, and solution species transport are all coupled together on the mesoscale. The work discussed herein demonstrates that simulation-based mesoscale optical and optoelectronic modeling can lead to detailed understanding of the operation and performance of these complex mesostructured devices, serve as a powerful tool for device optimization, and efficiently guide device design and experimental fabrication efforts. In-depth studies of two mesoscale wire-based device designs illustrate these principles—(i) an optoelectronic study of a tandem Si|WO3 microwire photoelectrochemical device, and (ii) an optical study of III-V nanowire arrays.

The study of the monolithic, tandem, Si|WO3 microwire photoelectrochemical device begins with development and validation of an optoelectronic model with experiment. This study capitalizes on synergy between experiment and simulation to demonstrate the model’s predictive power for extractable device voltage and light-limited current density. The developed model is then used to understand the limiting factors of the device and optimize its optoelectronic performance. The results of this work reveal that high fidelity modeling can facilitate unequivocal identification of limiting phenomena, such as parasitic absorption via excitation of a surface plasmon-polariton mode, and quick design optimization, achieving over a 300% enhancement in optoelectronic performance over a nominal design for this device architecture, which would be time-consuming and challenging to do via experiment.

The work on III-V nanowire arrays also starts as a collaboration of experiment and simulation aimed at gaining understanding of unprecedented, experimentally observed absorption enhancements in sparse arrays of vertically-oriented GaAs nanowires. To explain this resonant absorption in periodic arrays of high index semiconductor nanowires, a unified framework that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes is developed in the context of silicon, using both analytic theory and electromagnetic simulations. This detailed theoretical understanding is then applied to a simulation-based optimization of light absorption in sparse arrays of GaAs nanowires. Near-unity absorption in sparse, 5% fill fraction arrays is demonstrated via tapering of nanowires and multiple wire radii in a single array. Finally, experimental efforts are presented towards fabrication of the optimized array geometries. A hybrid self-catalyzed and selective area MOCVD growth method is used to establish morphology control of GaP nanowire arrays. Similarly, morphology and pattern control of nanowires is demonstrated with ICP-RIE of InP. Optical characterization of the InP nanowire arrays gives proof of principle that tapering and multiple wire radii can lead to near-unity absorption in sparse arrays of InP nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is developed to calculate the settling speed of dilute arrays of spheres for the three cases of: I, a random array of freely moving particles; II, a random array of rigidly held particles; and III, a cubic array of particles. The basic idea of the technique is to give a formal representation for the solution and then manipulate this representation in a straightforward manner to obtain the result. For infinite arrays of spheres, our results agree with the results previously found by other authors, and the analysis here appears to be simpler. This method is able to obtain more terms in the answer than was possible by Saffman's unified treatment for point particles. Some results for arbitrary two sphere distributions are presented, and an analysis of the wall effect for particles settling in a tube is given. It is expected that the method presented here can be generalized to solve other types of problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar.

Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry.

The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires.

Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction arrays. These devices offer potential efficiencies of 34%, as demonstrated through an analytical model and optoelectronic simulations. SiGe and Ge wires were fabricated via chemical-vapor deposition and reactive ion etching. GaAs was then grown on these substrates at the National Renewable Energy Lab and yielded ns lifetime components, as required for achieving high efficiency devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galaxy clusters are the largest gravitationally bound objects in the observable universe, and they are formed from the largest perturbations of the primordial matter power spectrum. During initial cluster collapse, matter is accelerated to supersonic velocities, and the baryonic component is heated as it passes through accretion shocks. This process stabilizes when the pressure of the bound matter prevents further gravitational collapse. Galaxy clusters are useful cosmological probes, because their formation progressively freezes out at the epoch when dark energy begins to dominate the expansion and energy density of the universe. A diverse set of observables, from radio through X-ray wavelengths, are sourced from galaxy clusters, and this is useful for self-calibration. The distributions of these observables trace a cluster's dark matter halo, which represents more than 80% of the cluster's gravitational potential. One such observable is the Sunyaev-Zel'dovich effect (SZE), which results when the ionized intercluster medium blueshifts the cosmic microwave background via Compton scattering. Great technical advances in the last several decades have made regular observation of the SZE possible. Resolved SZE science, such as is explored in this analysis, has benefitted from the construction of large-format camera arrays consisting of highly sensitive millimeter-wave detectors, such as Bolocam. Bolocam is a submillimeter camera, sensitive to 140 GHz and 268 GHz radiation, located at one of the best observing sites in the world: the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. Bolocam fielded 144 of the original spider web NTD bolometers used in an entire generation of ground-based, balloon-borne, and satellite-borne millimeter wave instrumention. Over approximately six years, our group at Caltech has developed a mature galaxy cluster observational program with Bolocam. This thesis describes the construction of the instrument's full cluster catalog: BOXSZ. Using this catalog, I have scaled the Bolocam SZE measurements with X-ray mass approximations in an effort to characterize the SZE signal as a viable mass probe for cosmology. This work has confirmed the SZE to be a low-scatter tracer of cluster mass. The analysis has also revealed how sensitive the SZE-mass scaling is to small biases in the adopted mass approximation. Future Bolocam analysis efforts are set on resolving these discrepancies by approximating cluster mass jointly with different observational probes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental studies of magnetic alignment of highly anisotropic mesostructures can enable the clean-room-free fabrication of flexible, array-based solar and electronic devices, in which preferential orientation of nano- or microwire-type objects is desired. In this study, ensembles of 100 micron long Si microwires with ferromagnetic Ni and Co coatings are oriented vertically in the presence of magnetic fields. The degree of vertical alignment and threshold field strength depend on geometric factors, such as microwire length and ferromagnetic coating thickness, as well as interfacial interactions, which are modulated by varying solvent and substrate surface chemistry. Microwire ensembles with vertical alignment over 97% within 10 degrees of normal, as measured by X-ray diffraction, are achieved over square cm scale areas and set into flexible polymer films. A force balance model has been developed as a predictive tool for magnetic alignment, incorporating magnetic torque and empirically derived surface adhesion parameters. As supported by these calculations, microwires are shown to detach from the surface and align vertically in the presence of magnetic fields on the order of 100 gauss. Microwires aligned in this manner are set into a polydimethylsiloxane film where they retain their vertical alignment after the field has been removed and can subsequently be used as a flexible solar absorber layer. Finally, these microwires arrays can be protected for use in electrochemical cells by the conformal deposition of a graphene layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. The thermomagnetic behavior and infrared spectroscopic features of KFe3(SO4)2(OH)6 (jarosite), (H3O)Fe3(SO4)2 (OH)6 (hydronium jarosite), KFe3(CrO4)2 (OH)6, Fe(OH)SO4 (basic iron sulfate), and Fe(OH)CrO4 (basic iron chromate) are reported. Fe(OH)CrO4 and KFe3(CrO4)2 (OH)6 are shown to be weak ferro magnets with Curie temperatures of 73 and 71 °K, respectively. This unusual magnetic behavior is rationalized in terms of the ionic spin configurations of the phases. Exchange coupling through chromate bridging groups is shown to be weak.

II. The magnetic behavior and the influence of preparative history on the magnetic behavior of δFeO(OH) is reported. δFeO(OH) is shown to be a fine-particulate, uniaxial, magnetic species. Magnetization data for this species are shown to be consistent with the existence of magnetically inactive layers surrounding magnetic particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

A study of the thermal reaction of water vapor and parts-per-million concentrations of nitrogen dioxide was carried out at ambient temperature and at atmospheric pressure. Nitric oxide and nitric acid vapor were the principal products. The initial rate of disappearance of nitrogen dioxide was first order with respect to water vapor and second order with respect to nitrogen dioxide. An initial third-order rate constant of 5.5 (± 0.29) x 104 liter2 mole-2 sec-1 was found at 25˚C. The rate of reaction decreased with increasing temperature. In the temperature range of 25˚C to 50˚C, an activation energy of -978 (± 20) calories was found.

The reaction did not go to completion. From measurements as the reaction approached equilibrium, the free energy of nitric acid vapor was calculated. This value was -18.58 (± 0.04) kilocalories at 25˚C.

The initial rate of reaction was unaffected by the presence of oxygen and was retarded by the presence of nitric oxide. There were no appreciable effects due to the surface of the reactor. Nitric oxide and nitrogen dioxide were monitored by gas chromatography during the reaction.

Part II

The air oxidation of nitric oxide, and the oxidation of nitric oxide in the presence of water vapor, were studied in a glass reactor at ambient temperatures and at atmospheric pressure. The concentration of nitric oxide was less than 100 parts-per-million. The concentration of nitrogen dioxide was monitored by gas chromatography during the reaction.

For the dry oxidation, the third-order rate constant was 1.46 (± 0.03) x 104 liter2 mole-2 sec-1 at 25˚C. The activation energy, obtained from measurements between 25˚C and 50˚C, was -1.197 (±0.02) kilocalories.

The presence of water vapor during the oxidation caused the formation of nitrous acid vapor when nitric oxide, nitrogen dioxide and water vapor combined. By measuring the difference between the concentrations of nitrogen dioxide during the wet and dry oxidations, the rate of formation of nitrous acid vapor was found. The third-order rate constant for the formation of nitrous acid vapor was equal to 1.5 (± 0.5) x 105 liter2 mole-2 sec-1 at 40˚C. The reaction rate did not change measurably when the temperature was increased to 50˚C. The formation of nitric acid vapor was prevented by keeping the concentration of nitrogen dioxide low.

Surface effects were appreciable for the wet tests. Below 35˚C, the rate of appearance of nitrogen dioxide increased with increasing surface. Above 40˚C, the effect of surface was small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of the study, an RF coupled, atmospheric pressure, laminar plasma jet of argon was investigated for thermodynamic equilibrium and some rate processes.

Improved values of transition probabilities for 17 lines of argon I were developed from known values for 7 lines. The effect of inhomogeneity of the source was pointed out.

The temperatures, T, and the electron densities, ne , were determined spectroscopically from the population densities of the higher excited states assuming the Saha-Boltzmann relationship to be valid for these states. The axial velocities, vz, were measured by tracing the paths of particles of boron nitride using a three-dimentional mapping technique. The above quantities varied in the following ranges: 1012 ˂ ne ˂ 1015 particles/cm3, 3500 ˂ T ˂ 11000 °K, and 200 ˂ vz ˂ 1200 cm/sec.

The absence of excitation equilibrium for the lower excitation population including the ground state under certain conditions of T and ne was established and the departure from equilibrium was examined quantitatively. The ground state was shown to be highly underpopulated for the decaying plasma.

Rates of recombination between electrons and ions were obtained by solving the steady-state equation of continuity for electrons. The observed rates were consistent with a dissociative-molecular ion mechanism with a steady-state assumption for the molecular ions.

In the second part of the study, decomposition of NO was studied in the plasma at lower temperatures. The mole fractions of NO denoted by xNO were determined gas-chromatographically and varied between 0.0012 ˂ xNO ˂ 0.0055. The temperatures were measured pyrometrically and varied between 1300 ˂ T ˂ 1750°K. The observed rates of decomposition were orders of magnitude greater than those obtained by the previous workers under purely thermal reaction conditions. The overall activation energy was about 9 kcal/g mol which was considerably lower than the value under thermal conditions. The effect of excess nitrogen was to reduce the rate of decomposition of NO and to increase the order of the reaction with respect to NO from 1.33 to 1.85. The observed rates were consistent with a chain mechanism in which atomic nitrogen and oxygen act as chain carriers. The increased rates of decomposition and the reduced activation energy in the presence of the plasma could be explained on the basis of the observed large amount of atomic nitrogen which was probably formed as the result of reactions between excited atoms and ions of argon and the molecular nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of the optical properties of β–gallium oxide has been carried out, covering the wavelength range 220-2500 nm.

The refractive index and birefringence have been determined to about ± 1% accuracy over the range 270-2500 nm, by the use of a technique based on the occurrence of fringes in the transmission of a thin sample due to multiple internal reflections in the sample (ie., the "channelled spectrum" of the sample.)

The optical absorption coefficient has been determined over the range 220 - 300 nm, which range spans the fundamental absorption edge of β – Ga2O3. Two techniques were used in the absorption coefficient determination: measurement of transmission of a thin sample, and measurement of photocurrent from a Schottky barrier formed on the surface of a sample. Absorption coefficient was measured over a range from 10 to greater than 105, to an accuracy of better than ± 20%. The absorption edge was found to be strongly polarization-dependent.

Detailed analyses are presented of all three experimental techniques used. Experimentally determined values of the optical constants are presented in graphical form.