3 resultados para OCLC Resource Sharing
em CaltechTHESIS
Resumo:
In noncooperative cost sharing games, individually strategic agents choose resources based on how the welfare (cost or revenue) generated at each resource (which depends on the set of agents that choose the resource) is distributed. The focus is on finding distribution rules that lead to stable allocations, which is formalized by the concept of Nash equilibrium, e.g., Shapley value (budget-balanced) and marginal contribution (not budget-balanced) rules.
Recent work that seeks to characterize the space of all such rules shows that the only budget-balanced distribution rules that guarantee equilibrium existence in all welfare sharing games are generalized weighted Shapley values (GWSVs), by exhibiting a specific 'worst-case' welfare function which requires that GWSV rules be used. Our work provides an exact characterization of the space of distribution rules (not necessarily budget-balanced) for any specific local welfare functions remains, for a general class of scalable and separable games with well-known applications, e.g., facility location, routing, network formation, and coverage games.
We show that all games conditioned on any fixed local welfare functions possess an equilibrium if and only if the distribution rules are equivalent to GWSV rules on some 'ground' welfare functions. Therefore, it is neither the existence of some worst-case welfare function, nor the restriction of budget-balance, which limits the design to GWSVs. Also, in order to guarantee equilibrium existence, it is necessary to work within the class of potential games, since GWSVs result in (weighted) potential games.
We also provide an alternative characterization—all games conditioned on any fixed local welfare functions possess an equilibrium if and only if the distribution rules are equivalent to generalized weighted marginal contribution (GWMC) rules on some 'ground' welfare functions. This result is due to a deeper fundamental connection between Shapley values and marginal contributions that our proofs expose—they are equivalent given a transformation connecting their ground welfare functions. (This connection leads to novel closed-form expressions for the GWSV potential function.) Since GWMCs are more tractable than GWSVs, a designer can tradeoff budget-balance with computational tractability in deciding which rule to implement.
Resumo:
This thesis brings together four papers on optimal resource allocation under uncertainty with capacity constraints. The first is an extension of the Arrow-Debreu contingent claim model to a good subject to supply uncertainty for which delivery capacity has to be chosen before the uncertainty is resolved. The second compares an ex-ante contingent claims market to a dynamic market in which capacity is chosen ex-ante and output and consumption decisions are made ex-post. The third extends the analysis to a storable good subject to random supply. Finally, the fourth examines optimal allocation of water under an appropriative rights system.
Resumo:
Real-time demand response is essential for handling the uncertainties of renewable generation. Traditionally, demand response has been focused on large industrial and commercial loads, however it is expected that a large number of small residential loads such as air conditioners, dish washers, and electric vehicles will also participate in the coming years. The electricity consumption of these smaller loads, which we call deferrable loads, can be shifted over time, and thus be used (in aggregate) to compensate for the random fluctuations in renewable generation.
In this thesis, we propose a real-time distributed deferrable load control algorithm to reduce the variance of aggregate load (load minus renewable generation) by shifting the power consumption of deferrable loads to periods with high renewable generation. The algorithm is model predictive in nature, i.e., at every time step, the algorithm minimizes the expected variance to go with updated predictions. We prove that suboptimality of this model predictive algorithm vanishes as time horizon expands in the average case analysis. Further, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance. Finally, we evaluate the algorithm via trace-based simulations.