2 resultados para O-PHENYLENEDIAMINE
em CaltechTHESIS
Resumo:
The condensation of phenanthroline-5,6-dione (phendione) with polyamines is a versatile synthetic route to a wide variety of chelating ligands. Condensation with 2,3- napthalene diamine gives benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (bdppz) a ligand containing weakly-coupled orbitals of benzophenazine (bpz) and 2,2' -bipyridinde(bpy) character. The bpy character gives Re and Ru complexes excited-state redox properties; intramolecular electron transfer (ET) takes place to the bpz portion of the ligand. The charge-separated state so produced has an extraordinarily-long 50 µs lifetime. The slow rate of charge recombination arises from a combination of extremely weak coupling between the metal center and the bpz acceptor orbital and Marcus "inverted region" behavior. Molecular orbital calculations show that only 3% the electron density in the lowest unoccupied molecular orbital lies on the bpy atoms of bdppz, effectively trapping the transferred electron on the bpz portion. The rate of charge recombination decreases with increasing driving force, showing that these rates lie in the inverted region. Comparison of forward and back ET rates shows that donor-acceptor coupling is four orders of magnitude greater for photoinduced electron transfer than it is for thermal charge recombination.
Condensation of phendione with itself or tetramines gives a series of binucleating tetrapyridophenazine ligands of incrementally-varying coordination-site separation. When a photoredox-active metal center is attached, excited-state energy and electron transfer to an acceptor metal center at the other coordination site can be studied as a function of distance. A variety of monometallic and homo- and heterodimetallic tetrapyridophenazine complexes has been synthesized. Electro- and magnetochemistry show that no ground-state interaction exists between the metals in bimetallic complexes. Excited-state energy and electron transfer, however, takes place at rates which are invariant with increasing donor-acceptor separation, indicating that a very efficient coupling mechanism is at work. Theory and experiment have suggested that such behavior might exist in extended π-systems like those presented by these ligands.
Condensation of three equivalents of 4,5-dimethyl-1,2-phenylenediamine with hexaketocyclohexane gives the trinucleating ligand hexaazahexamethyltrinapthalene (hhtn). Attaching two photredox-active metal centers and a third catalytic center to hhtn provides means by which multielectron photocatalyzed reactions might be carried out. The coordination properties of hhtn have been examined; X-ray crystallographic structure determination shows that the ligand's constricted coordination pocket leads to distorted geometries in its mono- and dimetallic derivatives.
Resumo:
Chapter I
Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.
Chapter II
A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.
EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.
EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.
Chapter III
A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.