12 resultados para Nucleic acid detection tests

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acids are most commonly associated with the genetic code, transcription and gene expression. Recently, interest has grown in engineering nucleic acids for biological applications such as controlling or detecting gene expression. The natural presence and functionality of nucleic acids within living organisms coupled with their thermodynamic properties of base-pairing make them ideal for interfacing (and possibly altering) biological systems. We use engineered small conditional RNA or DNA (scRNA, scDNA, respectively) molecules to control and detect gene expression. Three novel systems are presented: two for conditional down-regulation of gene expression via RNA interference (RNAi) and a third system for simultaneous sensitive detection of multiple RNAs using labeled scRNAs.

RNAi is a powerful tool to study genetic circuits by knocking down a gene of interest. RNAi executes the logic: If gene Y is detected, silence gene Y. The fact that detection and silencing are restricted to the same gene means that RNAi is constitutively on. This poses a significant limitation when spatiotemporal control is needed. In this work, we engineered small nucleic acid molecules that execute the logic: If mRNA X is detected, form a Dicer substrate that targets independent mRNA Y for silencing. This is a step towards implementing the logic of conditional RNAi: If gene X is detected, silence gene Y. We use scRNAs and scDNAs to engineer signal transduction cascades that produce an RNAi effector molecule in response to hybridization to a nucleic acid target X. The first mechanism is solely based on hybridization cascades and uses scRNAs to produce a double-stranded RNA (dsRNA) Dicer substrate against target gene Y. The second mechanism is based on hybridization of scDNAs to detect a nucleic acid target and produce a template for transcription of a short hairpin RNA (shRNA) Dicer substrate against target gene Y. Test-tube studies for both mechanisms demonstrate that the output Dicer substrate is produced predominantly in the presence of a correct input target and is cleaved by Dicer to produce a small interfering RNA (siRNA). Both output products can lead to gene knockdown in tissue culture. To date, signal transduction is not observed in cells; possible reasons are explored.

Signal transduction cascades are composed of multiple scRNAs (or scDNAs). The need to study multiple molecules simultaneously has motivated the development of a highly sensitive method for multiplexed northern blots. The core technology of our system is the utilization of a hybridization chain reaction (HCR) of scRNAs as the detection signal for a northern blot. To achieve multiplexing (simultaneous detection of multiple genes), we use fluorescently tagged scRNAs. Moreover, by using radioactive labeling of scRNAs, the system exhibits a five-fold increase, compared to the literature, in detection sensitivity. Sensitive multiplexed northern blot detection provides an avenue for exploring the fate of scRNAs and scDNAs in tissue culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acids are a useful substrate for engineering at the molecular level. Designing the detailed energetics and kinetics of interactions between nucleic acid strands remains a challenge. Building on previous algorithms to characterize the ensemble of dilute solutions of nucleic acids, we present a design algorithm that allows optimization of structural features and binding energetics of a test tube of interacting nucleic acid strands. We extend this formulation to handle multiple thermodynamic states and combinatorial constraints to allow optimization of pathways of interacting nucleic acids. In both design strategies, low-cost estimates to thermodynamic properties are calculated using hierarchical ensemble decomposition and test tube ensemble focusing. These algorithms are tested on randomized test sets and on example pathways drawn from the molecular programming literature. To analyze the kinetic properties of designed sequences, we describe algorithms to identify dominant species and kinetic rates using coarse-graining at the scale of a small box containing several strands or a large box containing a dilute solution of strands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce an in vitro diagnostic magnetic biosensing platform for immunoassay and nucleic acid detection. The platform has key characteristics for a point-of-use (POU) diagnostic: portability, low-power consumption, low cost, and multiplexing capability. As a demonstration of capabilities, we use this platform for the room temperature, amplification-free detection of a 31 bp DNA oligomer and interferon-gamma (a protein relevant for tuberculosis diagnosis). Reliable assay measurements down to 100 pM for the DNA and 1 pM for the protein are demonstrated. We introduce a novel "magnetic freezing" technique for baseline measurement elimination and to enable spatial multiplexing. We have created a general protocol for adapting integrated circuit (IC) sensors to any of hundreds of commercially available immunoassay kits and custom designed DNA sequences.

We also introduce a method for immunotherapy treatment of malignant gliomas. We utilize leukocytes internalized with immunostimulatory nanoparticle-oligonucleotide conjugates to localize and retain immune cells near the tumor site. As a proof-of-principle, we develop a novel cell imaging and incubation chamber for in vitro magnetic motility experiments. We use the apparatus to demonstrate the controlled movement of magnetically loaded THP-1 leukocytes.

Finally, we introduce an IC transmitter and power ampli er (PA) that utilizes electronic digital infrastructure, sensors, and actuators to self-heal and adapt to process, dynamic, and environmental variation. Traditional IC design has achieved incredible degrees of reliability by ensuring that billions of transistors on a single IC die are all simultaneously functional. Reliability becomes increasingly difficult as the size of a transistor shrinks. Self-healing can mitigate these variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal complexes that utilize the 9,10-phenanthrene quinone diimine (phi) moiety bind to DNA through the major groove. These metallointercalators can recognize DNA sites and perform reactions on DNA as a substrate. The site-specific metallointercalator Λ-1-Rh(MGP)_2phi^(5+) competitively disrupts the major groove binding of a transcription factor, yAP-1, from an oligonucleotide that contains a common binding site. The demonstration that metal complexes can prevent transcription factor binding to DNA site-specifically is an important step in using metallointercalators as therapeutics.

The distinctive photochemistry of metallointercalators can also be applied to promote long range charge transport in DNA. Experiments using duplexes with regions 4 to 10 nucleotides long containing strictly adenine and thymine sequences of varying order showed that radical migration is more dependent on the sequence of bases, and less dependent on the distance between the guanine doublets. This result suggests that mechanistic proposals of long range charge transport must involve all the bases.

RNA/DNA hybrids show charge migration to guanines from a remote site, thus demonstrating that nucleic acid stacking other than B-form can serve as a radical bridge. Double crossover DNA assemblies also provide a medium for charge transport at distances up to 100 Å from the site of radical introduction by a tethered metal complex. This radical migration was found to be robust to mismatches, and limited to individual, electronically distinct base stacks. In single DNA crossover assemblies, which have considerably greater flexibility, charge migration proceeds to both base stacks due to conformational isomers not present in the rigid and tightly annealed double crossovers.

Finally, a rapid, efficient, gel-based technique was developed to investigate thymine dimer repair. Two oligonucleotides, one radioactively labeled, are photoligated via the bases of a thymine-thymine interface; reversal of this ligation is easily visualized by gel electrophoresis. This assay was used to show that the repair of thymine dimers from a distance through DNA charge transport can be accomplished with different photooxidants.

Thus, nucleic acids that support long range charge transport have been shown to include A-track DNA, RNA/DNA hybrids, and single and double crossovers, and a method for thymine dimer repair detection using charge transport was developed. These observations underscore and extend the remarkable finding that DNA can serve a medium for charge transport via the heteroaromatic base stack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some of the most exciting developments in the field of nucleic acid engineering include the utilization of synthetic nucleic acid molecular devices as gene regulators, as disease marker detectors, and most recently, as therapeutic agents. The common thread between these technologies is their reliance on the detection of specific nucleic acid input markers to generate some desirable output, such as a change in the copy number of an mRNA (for gene regulation), a change in the emitted light intensity (for some diagnostics), and a change in cell state within an organism (for therapeutics). The research presented in this thesis likewise focuses on engineering molecular tools that detect specific nucleic acid inputs, and respond with useful outputs.

Four contributions to the field of nucleic acid engineering are presented: (1) the construction of a single nucleotide polymorphism (SNP) detector based on the mechanism of hybridization chain reaction (HCR); (2) the utilization of a single-stranded oligonucleotide molecular Scavenger as a means of enhancing HCR selectivity; (3) the implementation of Quenched HCR, a technique that facilitates transduction of a nucleic acid chemical input into an optical (light) output, and (4) the engineering of conditional probes that function as sequence transducers, receiving target signal as input and providing a sequence of choice as output. These programmable molecular systems are conceptually well-suited for performing wash-free, highly selective rapid genotyping and expression profiling in vitro, in situ, and potentially in living cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I. Complexes of Biological Bases and Oligonucleotides with RNA

The physical nature of complexes of several biological bases and oligonucleotides with single-stranded ribonucleic acids have been studied by high resolution proton magnetic resonance spectroscopy. The importance of various forces in the stabilization of these complexes is also discussed.

Previous work has shown that purine forms an intercalated complex with single-stranded nucleic acids. This complex formation led to severe and stereospecific broadening of the purine resonances. From the field dependence of the linewidths, T1 measurements of the purine protons and nuclear Overhauser enhancement experiments, the mechanism for the line broadening was ascertained to be dipole-dipole interactions between the purine protons and the ribose protons of the nucleic acid.

The interactions of ethidium bromide (EB) with several RNA residues have been studied. EB forms vertically stacked aggregates with itself as well as with uridine, 3'-uridine monophosphate and 5'-uridine monophosphate and forms an intercalated complex with uridylyl (3' → 5') uridine and polyuridylic acid (poly U). The geometry of EB in the intercalated complex has also been determined.

The effect of chain length of oligo-A-nucleotides on their mode of interaction with poly U in D20 at neutral pD have also been studied. Below room temperatures, ApA and ApApA form a rigid triple-stranded complex involving a stoichiometry of one adenine to two uracil bases, presumably via specific adenine-uracil base pairing and cooperative base stacking of the adenine bases. While no evidence was obtained for the interaction of ApA with poly U above room temperature, ApApA exhibited complex formation of a 1:1 nature with poly U by forming Watson-Crick base pairs. The thermodynamics of these systems are discussed.

Part II. Template Recognition and the Degeneracy of the Genetic Code

The interaction of ApApG and poly U was studied as a model system for the codon-anticodon interaction of tRNA and mRNA in vivo. ApApG was shown to interact with poly U below ~20°C. The interaction was of a 1:1 nature which exhibited the Hoogsteen bonding scheme. The three bases of ApApG are in an anti conformation and the guanosine base appears to be in the lactim tautomeric form in the complex.

Due to the inadequacies of previous models for the degeneracy of the genetic code in explaining the observed interactions of ApApG with poly U, the "tautomeric doublet" model is proposed as a possible explanation of the degenerate interactions of tRNA with mRNA during protein synthesis in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the development of chip-based technology for informative in vitro cancer diagnostics. In the first part of this thesis, I will present my contribution in the development of a technology called “Nucleic Acid Cell Sorting (NACS)”, based on microarrays composed of nucleic acid encoded peptide major histocompatibility complexes (p/MHC), and the experimental and theoretical methods to detect and analyze secreted proteins from single or few cells.

Secondly, a novel portable platform for imaging of cellular metabolism with radio probes is presented. A microfluidic chip, so called “Radiopharmaceutical Imaging Chip” (RIMChip), combined with a beta-particle imaging camera, is developed to visualize the uptake of radio probes in a small number of cells. Due to its sophisticated design, RIMChip allows robust and user-friendly execution of sensitive and quantitative radio assays. The performance of this platform is validated with adherent and suspension cancer cell lines. This platform is then applied to study the metabolic response of cancer cells under the treatment of drugs. Both cases of mouse lymphoma and human glioblastoma cell lines, the metabolic responses to the drug exposures are observed within a short time (~ 1 hour), and are correlated with the arrest of cell-cycle, or with changes in receptor tyrosine kinase signaling.

The last parts of this thesis present summaries of ongoing projects: development of a new agent as an in vivo imaging probe for c-MET, and quantitative monitoring of glycolytic metabolism of primary glioblastoma cells. To develop a new agent for c-MET imaging, the one-bead-one-compound combinatorial library method is used, coupled with iterative screening. The performance of the agent is quantitatively validated with cell-based fluorescent assays. In the case of monitoring the metabolism of primary glioblastoma cell, by RIMChip, cells were sorting according to their expression levels of oncoprotein, or were treated with different kinds of drugs to study the metabolic heterogeneity of cancer cells or metabolic response of glioblastoma cells to drug treatments, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA interference (RNAi) is a powerful biological pathway allowing for sequence-specific knockdown of any gene of interest. While RNAi is a proven tool for probing gene function in biological circuits, it is limited by being constitutively ON and executes the logical operation: silence gene Y. To provide greater control over post-transcriptional gene silencing, we propose engineering a biological logic gate to implement “conditional RNAi.” Such a logic gate would silence gene Y only upon the expression of gene X, a completely unrelated gene, executing the logic: if gene X is transcribed, silence independent gene Y. Silencing of gene Y could be confined to a specific time and/or tissue by appropriately selecting gene X.

To implement the logic of conditional RNAi, we present the design and experimental validation of three nucleic acid self-assembly mechanisms which detect a sub-sequence of mRNA X and produce a Dicer substrate specific to gene Y. We introduce small conditional RNAs (scRNAs) to execute the signal transduction under isothermal conditions. scRNAs are small RNAs which change conformation, leading to both shape and sequence signal transduction, in response to hybridization to an input nucleic acid target. While all three conditional RNAi mechanisms execute the same logical operation, they explore various design alternatives for nucleic acid self-assembly pathways, including the use of duplex and monomer scRNAs, stable versus metastable reactants, multiple methods of nucleation, and 3-way and 4-way branch migration.

We demonstrate the isothermal execution of the conditional RNAi mechanisms in a test tube with recombinant Dicer. These mechanisms execute the logic: if mRNA X is detected, produce a Dicer substrate targeting independent mRNA Y. Only the final Dicer substrate, not the scRNA reactants or intermediates, is efficiently processed by Dicer. Additional work in human whole-cell extracts and a model tissue-culture system delves into both the promise and challenge of implementing conditional RNAi in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.

In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.

Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.

We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I

These studies investigate the potential of single and double treatments with either 5-fluorodeoxyuridine of excess thymidine to induce cell division synchrony in suspension cultures of HeLa cells. The patterns of nucleic acid synthesis and cell proliferation have been analyzed in cultures thus synchronized. Several changes in cell population during long incubation with 5-fluorodeoxyuridine or excess thymidine are also described. These results are subjected to detailed evaluation in terms of the degree and quality of synchrony finally achieved.

Part II

Histones and non-histone proteins associated with interphase and metaphase chromosomes of HeLa cells have been qualitatively and quantitatively analyzed. Histones were fractionated by chromatography on Amberlite CG-50 and further characterized by analytical disc electrophoresis and amino acid analysis of each chromatographic fraction. It is concluded that histones of HeLa cells are comprised of only a small number of major components and that these components are homologous to those of other higher organisms. Of all the histones, arginine-rich histone III alone contains cysteine and can polymerize through formation of intermolecular disulfide bridges between histone III monomers.

A detailed comparison by chromatography and disc electrophoresis established that interphase and metaphase histones are made up of similar components. However, certain quantitative differences in proportions of different histones of interphase and metaphase cells are reported. Indirect evidence indicates that a certain proportion of metaphase histone III is polymerized through intermolecular disulfide links, whereas interphase histone III occurs mainly in the monomeric form.

Metaphase chromosomes are associated with an additional acid-soluble protein fraction which is absent from interphase chromosomes. All of these additional acid-soluble proteins of metaphase chromosomes are shown to be non-histones and it is concluded that the histone/DNA ratio is identical in interphase and metaphase chromosomes. The bulk of acid-soluble non-histone proteins of metaphase chromosomes were found to be polymerized through disulfide bridges; corresponding interphase non-histone proteins displayed no evidence of similar polymerization.

The factors responsible for the condensed configuration and metabolic inactivity of metaphase chromosomes are discussed in light of these findings.

The relationship between histone and DNA synthesis in nondividing differentiated chicken erythrocyte cells and in rapidly dividing undifferentiated HeLa cells is also investigated. Of all the histones, only arginine-rich histones are synthesized in mature erythrocytes. Histone synthesis in HeLa cells was studied in both unsynchronized and synchronized cultures. In HeLa cells, only part of the synthesis of all histone fractions is dependent on concurrent DNA synthesis, whereas all histones are synthesized in varying degrees even in the absence of DNA synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major nonhistone chromosomal proteins (NHC proteins) are a group of 14-20 acidic proteins associated with DNA in eukaryotic chromatin. In comparisons by SDS gel electrophoresis (molecular weight sieving) one observes a high degree of homology among the NHC protein fractions of different tissues from a given species. Tissue-specific protein bands are also observed. The appearance of a new NHC protein, A, in the NHC proteins of rat liver stimulated to divide by partial hepatectomy and of rat ascites cells suggests that this protein may play a role in preparing the cell for division. The NHC proteins of the same tissue from different species are also very similar. Quantitative but not qualitative changes in the NHC proteins of rat uterus are observed on stimulation (in vivo) with estrogen. These observations suggest that the major NHC proteins play a general role in chromatin structure and the regulation of genome expression; several may be enzymes of nucleic acid and histone metabolism and/or structural proteins analogous to histones. One such enzyme, a protease which readily and preferentially degrades histones, can be extracted from chromatin with 0.7 N NaCl.

Although the NHC proteins readily aggregate, they can be separated from histone and fractionated by ion exchange chromatography on Sephadex SE C-25 resin in 10 M urea-25% formic acid (pH 2.5). Following further purification, four fractions of NHC protein are obtained; two of these are single purified proteins, and the other two contain 4-6 and 4-7 different proteins. These NHC proteins show a ratio of acidic to basic amino acids from 2.7 to 1.2 and isoelectric points from apparently less than 3.7 to 8.0. These isolated fractions appear more soluble and easier to work with than any whole NHC protein preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I. It was not possible to produce anti-tetracycline antibody in laboratory animals by any of the methods tried. Tetracycline protein conjugates were prepared and characterized. It was shown that previous reports of the detection of anti-tetracycline antibody by in vitro-methods were in error. Tetracycline precipitates non-specifically with serum proteins. The anaphylactic reaction reported was the result of misinterpretation, since the observations were inconsistent with the known mechanism of anaphylaxis and the supposed antibody would not sensitize guinea pig skin. The hemagglutination reaction was not reproducible and was extremely sensitive to minute amounts of microbial contamination. Both free tetracyclines and the conjugates were found to be poor antigens.

II. Anti-aspiryl antibodies were produced in rabbits using 3 protein carriers. The method of inhibition of precipitation was used to determine the specificity of the antibody produced. ε-Aminocaproate was found to be the most effective inhibitor of the haptens tested, indicating that the combining hapten of the protein is ε-aspiryl-lysyl. Free aspirin and salicylates were poor inhibitors and did not combine with the antibody to a significant extent. The ortho group was found to participate in the binding to antibody. The average binding constants were measured.

Normal rabbit serum was acetylated by aspirin under in vitro conditions, which are similar to physiological conditions. The extent of acetylation was determined by immunochemical tests. The acetylated serum proteins were shown to be potent antigens in rabbits. It was also shown that aspiryl proteins were partially acetylated. The relation of these results to human aspirin intolerance is discussed.

III. Aspirin did not induce contact sensitivity in guinea pigs when they were immunized by techniques that induce sensitivity with other reactive compounds. The acetylation mechanism is not relevant to this type of hypersensitivity, since sensitivity is not produced by potent acetylating agents like acetyl chloride and acetic anhydride. Aspiryl chloride, a totally artificial system, is a good sensitizer. Its specificity was examined.

IV. Protein conjugates were prepared with p-aminosalicylic acid and various carriers using azo, carbodiimide and mixed anhydride coupling. These antigens were injected into rabbits and guinea pigs and no anti-hapten IgG or IgM response was obtained. Delayed hypersensitivity was produced in guinea pigs by immunization with the conjugates, and its specificity was determined. Guinea pigs were not sensitized by either injections or topical application of p-amino-salicylic acid or p-aminosalicylate.