4 resultados para Northington, Robert Henley, Earl of, 1708?-1772.

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of exoplanets is rapidly evolving into an important and exciting field of its own. My investigations over the past half-decade have focused on understanding just a small sliver of what they are trying to tell us. That small sliver is their atmospheres. Atmospheres are the buffer between the bulk planet and the vacuum of space. The atmosphere is an important component of a planet as it is the most readily observable and contains the most information about the physical processes that can occur in a planet. I have focused on two aspects of exoplanetary atmospheres. First, I aimed to understand the chemical mechanisms that control the atmospheric abundances. Second, I focused on interpreting exoplanet atmospheric spectra and what they tell us about the temperatures and compositions through inverse modeling. Finally, I interpreted the retrieved temperature and abundances from inverse modeling in the context of chemical disequilibrium in the planetary atmospheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous metals that form fully glassy parts over a few millimeters in thickness are still relatively new materials. Their glassy structure gives them particularly high strengths, high yield strains, high hardness values, high resilience, and low damping losses, but this can also result in an extremely low tolerance to the presence of flaws in the material. Since this glassy structure lacks the ordered crystal structure, it also lacks the crystalline defect (dislocations) that provides the micromechanism of toughening and flaw insensitivity in conventional metals. Without a sufficient and reliable toughness that results in a large tolerance of damage in the material, metallic glasses will struggle to be adopted commercially. Here, we identify the origin of toughness in metallic glass as the competition between the intrinsic toughening mechanism of shear banding ahead of a crack and crack propagation by the cavitation of the liquid inside the shear bands. We present a detailed study over the first three chapters mainly focusing on the process of shear banding; its crucial role in giving rise to one of the most damage-tolerant materials known, its extreme sensitivity to the configurational state of a glass with moderate toughness, and how the configurational state can be changed with the addition of minor elements. The last chapter is a novel investigation into the cavitation barrier in glass-forming liquids, the competing process to shear banding. The combination of our results represents an increased understanding of the major influences on the fracture toughness of metallic glasses and thus provides a path for the improvement and development of tougher metallic glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein are described the total syntheses of all members of the transtaganolide and basiliolide natural product family. Utilitzation of an Ireland–Claisen rearrangement/Diels–Alder cycloaddition cascade (ICR/DA) allowed for rapid assembly of the transtaganolide and basiliolide oxabicyclo[2.2.2]octane core. This methodology is general and was applicable to all members of the natural product family.

A brief introduction outlines all the synthetic progress previously disclosed by Lee, Dudley, and Johansson. This also includes the initial syntheses of transtaganolides C and D, as well as basiliolide B and epi-basiliolide B accomplished by Stoltz in 2011. Lastly, we discuss our racemic synthesis of basililide C and epi-basiliolide C, which utilized an ICR/DA cascade to constuct the oxabicyclo[2.2.2]octane core and formal [5+2] annulation to form the ketene-acetal containing 7-membered C-ring.

Next, we describe a strategy for an asymmetric ICR/DA cascade, by incorporation of a chiral silane directing group. This allowed for enantioselective construction of the C8 all-carbon quaternary center formed in the Ireland–Claisen rearrangement. Furthermore, a single hydride reduction and subsequent translactonization of a C4 methylester bearing oxabicyclo[2.2.2]octane core demonstrated a viable strategy for the desired skeletal rearrangement to obtain pentacyclic transtaganolides A and B. Application of the asymmetric strategy culminated in the total syntheses of (–)-transtaganolide A, (+)-transtaganolide B, (+)-transtaganolide C, and (–)-transtaganolide D. Comparison of the optical rotation data of the synthetically derived transtaganolides to that from the isolated counterparts has overarching biosynthetic implications which are discussed.

Lastly, improvement to the formal [5+2] annulation strategy is described. Negishi cross-coupling of methoxyethynyl zinc chloride using a palladium Xantphos catalyst is optimized for iodo-cyclohexene. Application of this technology to an iodo-pyrone geranyl ester allowed for formation and isolation of the eneyne product. Hydration of the enenye product forms natural metabolite basiliopyrone. Furthermore, the eneyne product can undergo an ICR/DA cascade and form transtaganolides C and D in a single step from an achiral monocyclic precursor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equations of motion for the flow of a mixture of liquid droplets, their vapor, and an inert gas through a normal shock wave are derived. A set of equations is obtained which is solved numerically for the equilibrium conditions far downstream of the shock. The equations describing the process of reaching equilibrium are also obtained. This is a set of first-order nonlinear differential equations and must also be solved numerically. The detailed equilibration process is obtained for several cases and the results are discussed.