6 resultados para Nmr spectroscopy
em CaltechTHESIS
Resumo:
The speciation of water in a variety of hydrous silicate glasses, including simple and rhyolitic compositions, synthesized over a range of experimental conditions with up to 11 weight percent water has been determined using infrared spectroscopy. This technique has been calibrated with a series of standard glasses and provides a precise and accurate method for determining the concentrations of molecular water and hydroxyl groups in these glasses.
For all the compositions studied, most of the water is dissolved as hydroxyl groups at total water contents less than 3-4 weight percent; at higher total water contents, molecular water becomes the dominant species. For total water contents above 3-4 weight percent, the amount of water dissolved as hydroxyl groups is approximately constant at about 2 weight percent and additional water is incorporated as molecular water. Although there are small but measurable differences in the ratio of molecular water to hydroxyl groups at a given total water content among these silicate glasses, the speciation of water is similar over this range of composition. The trends in the concentrations of the H-bearing species in the hydrous glasses included in this study are similar to those observed in other silicate glasses using either infrared or NMR spectroscopy.
The effects of pressure and temperature on the speciation of water in albitic glasses have been investigated. The ratio of molecular water to hydroxyl groups at a given total water content is independent of the pressure and temperature of equilibration for albitic glasses synthesized in rapidly quenching piston cylinder apparatus at temperatures greater than 1000°C and pressures greater than 8 kbar. For hydrous glasses quenched from melts cooled at slower rates (i.e., in internally heated or in air-quench cold seal pressure vessels), there is an increase in the ratio of molecular water to hydroxyl group content that probably reflects reequilibration of the melt to lower temperatures during slow cooling.
Molecular water and hydroxyl group concentrations in glasses provide information on the dissolution mechanisms of water in silicate liquids. Several mixing models involving homogeneous equilibria of the form H_2O + O = 20H among melt species have been explored for albitic melts. These models can account for the measured species concentrations if the effects of non-ideal behavior or mixing of polymerized units are included, or by allowing for the presence of several different types of anhydrous species.
A thermodynamic model for hydrous albitic melts has been developed based on the assumption that the activity of water in the melt is equal to the mole fraction of molecular water determined by infrared spectroscopy. This model can account for the position of the watersaturated solidus of crystalline albite, the pressure and temperature dependence of the solubility of water in albitic melt, and the volumes of hydrous albitic melts. To the extent that it is successful, this approach provides a direct link between measured species concentrations in hydrous albitic glasses and the macroscopic thermodynamic properties of the albite-water system.
The approach taken in modelling the thermodynamics of hydrous albitic melts has been generalized to other silicate compositions. Spectroscopic measurements of species concentrations in rhyolitic and simple silicate glasses quenched from melts equilibrated with water vapor provide important constraints on the thermodynamic properties of these melt-water systems. In particular, the assumption that the activity of water is equal to the mole fraction of molecular water has been tested in detail and shown to be a valid approximation for a range of hydrous silicate melts and the partial molar volume of water in these systems has been constrained. Thus, the results of this study provide a useful thermodynamic description of hydrous melts that can be readily applied to other melt-water systems for which spectroscopic measurements of the H-bearing species are available.
Resumo:
Semisynthesis of horse heart cytochrome c and site-directed mutagenesis of Saccharomyces cerevisiae (S. c.) iso-1-cytochrome c have been utilized to substitute Ala for the cytochrome c heme axial ligand Met80 to yield ligand-binding proteins (horse heart Ala80cyt c and S.c. Ala80cyt c) with spectroscopic properties remarkably similar to those of myoglobin. Both species of Fe(II)Ala80cyt c form exceptionally stable dioxygen complexes with autoxidation rates 10-30x smaller and O2 binding constants ~ 3x greater than those of myoglobin. The resistance of O2-Fe(II)Ala80cyt c to autoxidation is attributed in part to protection of the heme site from solvent as exhibited by the exceptionally slow rate of CO binding to the heme as well as the low quantum yield of CO photodissociation.
UV/vis, EPR, and paramagnetic NMR spectroscopy indicate that at pH 7 the Fe(III)Ala80cyt c heme is low-spin with axial His-OH- coordination and that below pH ~6.5, Fe(III)Ala80cyt cis high-spin with His-H2O heme ligation. Significant differences in the pH dependence of the 1H NMR spectra of S.c. Fe(III)Ala80cyt c compared to wild-type demonstrate that the axial ligands influence the conformational energetics of cytochrome c.
1H NMR spectroscopy has been utilized to determine the solution structure of the cyanide derivative of S.c. Fe(III)Ala80cyt c. 82% of the resonances in the 1H NMR spectrum of S.c. CN-Fe(III)Ala80cyt c have been assigned through 1D and 2D experiments. The RMSD values after restrained energy minimization of the family of 17 structures obtained from distance geometry calculations are 0.68 ± 0.11 Å for the backbone and 1.32 ± 0.14 Å for all heavy atoms. The solution structure indicates that a tyrosine in the "distal" pocket of CN-Fe(III)Ala80cyt c forms a hydrogen bond with the Fe(III)-CN unit, suggesting that it may play a role analogous to that of the distal histidine in myoglobin in stabilizing the dioxygen adduct.
Resumo:
The thermal decomposition of Cp*Ti(CH_3)_2 (Cp*≡ ƞ^5-C_5Me_5) toluene solution follows cleanly first-order kinetics and produces a single titanium product Cp*(C_5Me_4CH_2)Ti(CH_3) concurrent with the evolution of one equivalent of methane. Labeling studies using Cp*_2Ti- (CD_3)_2 and (Cp*-d_(15))_2Ti(CH_3)_2 show the decomposition to be intramolecular and the methane to be produced by the coupling of a methyl group with a hydrogen from the other TiCH_3 group. Activation parameters, ΔH^‡ and ΔS^‡, and kinetic deuterium isotope effects have been measured. The alternative decomposition pathways of α-hydrogen abstraction and a-hydrogen elimination, both leading to a titanium-methylidene intermediate, are discussed.
The insertion of unactivated acetylenes into the metal-hydride bonds of Cp*_2MH_2 (M = Zr, Hf) proceeds rapidly at low temperature to form monoand/ or bisinsertion products, dependent upon the steric bulk of the acetylene substituents. Cp*_2M(H)(C(Me)=CHMe), Cp*_2M(H)(CH=CHCMe_3), Cp*_2M(H)-(CH=CHPh), Cp*_2M(CH=CHPh)_2, Cp*_2M(CH=CHCH_3)_2 and Cp*_2Zr- (CH=CHCH_2CH_3)_2 have been isolated and characterized. To extend the study of unsaturated-carbon ligands, Cp*_2M(C≡CCH_3)_2 have been prepared by treating Cp*_2MCl_2 with LiC≡CCH_3. The reactivity of many of these complexes with carbon monoxide and dihydrogen is surveyed. The mono(2- butenyl) complexes Cp*_2M(H)(C(Me)=CHMe) rearrange at room temperature, forming the crotyl-hydride species Cp*_2M(H)(ƞ^3-C_4H_7). The bis(propenyl) and bis(l-butenyl) zirconium complexes Cp*_2Zr(CH=CHR)_2 (R = CH_3, CH_2CH_3) also rearrange, forming zirconacyclopentenes. Labeling studies, reaction chemistry, and kinetic measurements, including deuterium isotope effects, demonstrate that the unusual 6-hydrogen elimination from an sp^2-hybridized carbon is the first step in these latter rearrangements but is not observed in the former. Details of these mechanisms and the differences in reactivity of the zirconium and hafnium complexes are discussed.
The reactions of hydride- and alkyl-carbonyl derivatives of permethylniobocene with equimolar amounts of trialkylaluminum reagents occur rapidly producing the carbonyl adducts Cp*_2Nb(R)(COAlR'_3) (R = H, CH_3, CH_2CH_3, CH_2CH_2Ph, C(Me)=CHMe; R' = Me, Et). The hydride adduct Cp*_2NbH_3•AlEt_3 has also been formed. In solution, each of these compounds exists in equilibrium with the uncomplexed species. The formation constants for Cp*_2Nb(H)(COA1R'_R) have been measured. They indicate the steric bulk of the Cp* ligands plays a deciding factor in the isolation of the first example of an aluminum Lewis acid bound to a carbonyl-oxygen in preference to a metalhydride. Reactions of Cp*_2Nb(H)CO with other Lewis acids and of the one:one adducts with H_2, CO and C_2H_4 are also discussed.
Cp*_2Nb(H)(C_2H_4) also reacts with equimolar amounts of trialkylaluminum reagents, forming a one:one complex that ^1H NMR spectroscopy indicates contains a Nb-CH_2CH_2-Al bridge. This adduct also exists in equilibrium with the uncomplexed species in solution. The formation constant for Cp*_2N+/b(H)(CH_2CH_2ĀlEt_3) has been measured. Reactions of Cp*_2Nb(H)(C_2H_4) with other Lewis acids and the reactions of Cp*_2N+b(H)- (CH_2CH_2ĀlEt_3) with CO and C_2H_4 are described, as are the reactions of Cp_*2Nb(H)(CH_2=CHR) (R = Me, Ph), Cp*_2Nb(H)(CH_3C≡CCH_3) and Cp*_2Ti-(C_2H_4) with AlEt_3.
Resumo:
The development of catalysts that selectively oligomerize light olefins for uses in polymers and fuels remains of interest to the petrochemical and materials industry. For this purpose, two tantalum compounds, (FI)TaMe2Cl2 and (FI)TaMe4, implementing a previously reported phenoxy-imine (FI) ligand framework, have been synthesized and characterized with NMR spectroscopy and X-ray crystallography. When tested for ethylene oligomerization catalysis, (FI)TaMe2Cl2 was found to dimerize ethylene when activated with Et2Zn or EtMgCl, and (FI)TaMe4 dimerized ethylene when activated with B(C6F5)3, both at room temperature.
Resumo:
The isotope effect on propagation rate was determined for four homogeneous ethylene polymerization systems. The catalytic system Cp_2Ti(Et)Cl + EtA1Cl_2 has a k^H_p/k^D_p = 1.035 ± 0.03. This result strongly supports an insertion mechanism which does not involve a hydrogen migration during the rate determining step of propagation (Cossee mechanism). Three metal-alkyl free systems were also studied. The catalyst I_2 (PMe_3)_3Ta(neopentylidene)(H) has a k^H_p/k^D_p = 1.709. It is interpreted as a primary isotope effect involving a non-linear a-hydrogen migration during the rate determining step of propagation (Green mechanism). The lanthanide complexes Cp*_2LuMe•Et_2O and Cp*_2YbMe•Et_2O have a k^H_p/k^D_p = 1.46 and 1.25, respectively. They are interpreted as primary isotope effects due to a partial hydrogen migration during the rate determining step of propagation.
The presence of a precoordination or other intermediate species during the polymerization of ethylene by the mentioned metal-alkyl free catalysts was sought by low temperature NMR spectroscopy. However, no evidence for such species was found. If they exist, their concentrations are very small or their lifetimes are shorter than the NMR time scale.
Two titanocene (alkenyl)chlorides (hexenyl 1 and heptenyl 2 were prepared from titanocene dichloride and a THF solution of the corresponding alkenylmagnesium chloride. They do not cyclize in solution when alone, but cyclization to their respective titanocene(methyl(cycloalkyl) chlorides occurs readily in the presence of a Lewis acid. It is demonstrated that such cyclization occurs with the alkenyl ligand within the coordination sphere of the titanium atom. Cyclization of 1 with EtAlCl_2 at 0°C occurs in less than 95 msec (ethylene insertion time), as shown by the presence of 97% cyclopentyl-capped oligomers when polymerizing ethylene with this system. Some alkyl exchange occurs (3%). Cyclization of 2 is slower under the same reaction conditions and is not complete in 95 msec as shown by the presence of both cyclohexyl-capped oligomers (35%) and odd number α-olefin oligomers (50%). Alkyl exchange is more extensive as evidenced by the even number n-alkanes (15%).
Cyclization of 2-d_1 (titanocene(hept-6-en-1-yl-1-d_1)chloride) with EtA1Cl_2 demonstrated that for this system there is no α-hydrogen participation during said process. The cyclization is believed to occur by a Cossee-type mechanism. There was no evidence for precoordination of the alkenyl double bond during the cyclization process.
Resumo:
The binding and catalytic properties of hen's egg white lysozyme have been studied by a variety of techniques. These studies show that the enzyme has three contiguous binding subsites, A, B, and C. The application of nuclear magnetic resonance (NMR) spectroscopy to probe the binding environment of several saccharides to lysozyme has demonstrated that the reducing end sugar rings of chitotriose, chitobiose and the β-form of N-acetylglucosamine all bind in subsite C. The central sugar ring of chitotriose and the sugar ring at the nonreducing end of chitobiose were found to bind in subsite B, while the nonreducing end sugar residue of chitotriose occupied subsite A. The dynamics of the binding process has also been investigated by NMR. The formation rate constant of chitobiose--and chitotriose-enzyme complexes were found to be about 4 X 10-6 M-1 sec-1 with small activation energies.
The stereochemical path of the lysozyme catalyzed hydrolysis of glycosidic bonds has been shown to proceed with at least 99.7% retention of configuration at C-1 of the sugar. The lysozyme catalyzed hydrolysis of glucosidic bonds has been shown to be largely carbonium ion in character by virtue of the α-deuterium kinetic isotope effect (kH/kD = 1.11) observed for the reaction. It is probable that the mechanism of action of the enzyme involves a carbonium ion intermediate which is stereospecifically quenched by solvent. However, acetamido group participation cannot be ruled out for natural substrates.