2 resultados para Nervous system -- Diseases--Treatment.

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to identify new molecules that might play a role in regional specification of the nervous system, we generated and characterized monoclonal antibodies (mAbs) that have positionally-restricted labeling patterns.

The FORSE-1 mAb was generated using a strategy designed to produce mAbs against neuronal cell surface antigens that might be regulated by regionally-restricted transcription factors in the developing central nervous system (CNS). FORSE-1 staining is enriched in the forebrain as compared to the rest of the CNS until E18. Between E11.5-E13.5, only certain areas of the forebrain are labeled. There is also a dorsoventrally-restricted region of labeling in the hindbrain and spinal cord. The mAb labels a large proteoglycan-like cell-surface antigen (>200 kD). The labeling pattern of FORSE-1 is conserved in various mammals and in chick.

To determine whether the FORSE-1 labeling pattern is similar to that of known transcription factors, the expression of BF-1 and Dlx-2 was compared with FORSE-1. There is a striking overlap between BF-1 and FORSE-1 in the telencephalon. In contrast, FORSE-1 and Dlx-2 have very different patterns of expression in the forebrain, suggesting that regulation by Dlx-2 alone cannot explain the distribution of FORSE-1. They do, however, share some sharp boundaries in the diencephalon. In addition, FORSE-1 identifies some previously unknown boundaries in the developing forebrain. Thus, FORSE-1 is a new cell surface marker that can be used to subdivide the embryonic forebrain into regions smaller than previously described, providing further complexity necessary for developmental patterning.

I also studied the expression of the cell surface protein CD9 in the developing and adult rat nervous system. CD9 is implicated in intercellular signaling and cell adhesion in the hematopoetic system. In the nervous system, CD9 may perform similar functions in early sympathetic ganglia, chromaffin cells, and motor neurons, all of which express the protein. The presence of CD9 on the surfaces of Schwann cells and axons at the appropriate time may allow the protein to participate in the cellular interactions involved in myelination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic diseases of the central nervous system are poorly treated due to the inability of most therapeutics to cross the blood-brain barrier. The blood-brain barrier is an anatomical and physiological barrier that severely restricts solute influx, including most drugs, from the blood to the brain. One promising method to overcome this obstacle is to use endogenous solute influx systems at the blood-brain barrier to transport drugs. Therapeutics designed to enter the brain through transcytosis by binding the transferrin receptor, however, are restricted within endothelial cells. The focus of this work was to develop a method to increase uptake of transferrin-containing nanoparticles into the brain by overcoming these restrictive processes.

To accomplish this goal, nanoparticles were prepared with surface transferrin molecules bound through various liable chemical bonds. These nanoparticles were designed to shed the targeting molecule during transcytosis to allow increased accumulation of nanoparticles within the brain.

Transferrin was added to the surface of nanoparticles through either redox or pH sensitive chemistry. First, nanoparticles with transferrin bound through disulfide bonds were prepared. These nanoparticles showed decreased avidity for the transferrin receptor after exposure to reducing agents and increased ability to enter the brain in vivo compared to those lacking the disulfide link.

Next, transferrin was attached through a chemical bond that cleaves at mildly acidic pH. Nanoparticles containing a cleavable link between transferrin and gold nanoparticle cores were found to both cross an in vitro model of the blood-brain barrier and accumulate within the brain in significantly higher numbers than similar nanoparticles lacking the cleavable bond. Also, this increased accumulation was not seen when using this same strategy with an antibody to transferrin receptor, indicating that behavior of nanoparticles at the blood-brain barrier varies depending on what type of targeting ligand is used.

Finally, polymeric nanoparticles loaded with dopamine and utilizing a superior acid-cleavable targeting chemistry were investigated as a potential treatment for Parkinson’s disease. These nanoparticles were capable of increasing dopamine quantities in the brains of healthy mice, highlighting the therapeutic potential of this design. Overall, this work describes a novel method to increase targeted nanoparticle accumulation in the brain.