2 resultados para National Cancer Institute (U.S.). Division of Cancer Cause and Prevention

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunoglobulin G (IgG) is central in mediating host defense due to its ability to target and eliminate invading pathogens. The fragment antigen binding (Fab) regions are responsible for antigen recognition; however the effector responses are encoded on the Fc region of IgG. IgG Fc displays considerable glycan heterogeneity, accounting for its complex effector functions of inflammation, modulation and immune suppression. Intravenous immunoglobulin G (IVIG) is pooled serum IgG from multiple donors and is used to treat individuals with autoimmune and inflammatory disorders such as rheumatoid arthritis and Kawasaki’s disease, respectively. It contains all the subtypes of IgG (IgG1-4) and over 120 glycovariants due to variation of an Asparagine 297-linked glycan on the Fc. The species identified as the activating component of IVIG is sialylated IgG Fc. Comparisons of wild type Fc and sialylated Fc X-ray crystal structures suggests that sialylation causes an increase in conformational flexibility, which may be important for its anti-inflammatory properties.

Although glycan modifications can promote the anti-inflammatory properties of the Fc, there are amino acid substitutions that cause Fcs to initiate an enhanced immune response. Mutations in the Fc can cause up to a 100-fold increase in binding affinity to activating Fc gamma receptors located on immune cells, and have been shown to enhance antibody dependent cell-mediated cytotoxicity. This is important in developing therapeutic antibodies against cancer and infectious diseases. Structural studies of mutant Fcs in complex with activating receptors gave insight into new protein-protein interactions that lead to an enhanced binding affinity.

Together these studies show how dynamic and diverse the Fc region is and how both protein and carbohydrate modifications can alter structure, leading to IgG Fc’s switch from a pro-inflammatory to an anti-inflammatory protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Barton laboratory has established that octahedral rhodium complexes bearing the sterically expansive 5,6-chrysene diimine ligand can target thermodynamically destabilized sites, such as base pair mismatches, in DNA with high affinity and selectivity. These complexes approach DNA from the minor groove, ejecting the mismatched base pairs from the duplex in a binding mode termed metalloinsertion. In recent years, we have shown that these metalloinsertor complexes also exhibit cytotoxicity preferentially in cancer cells that are deficient in the mismatch repair (MMR) machinery.

Here, we establish that a sensitive structure-activity relationship exists for rhodium metalloinsertors. We studied the relationship between the chemical structures of metalloinsertors and their effect on biological activity for ten complexes with similar DNA binding affinities, but wide variation in their lipophilicity. Drastic differences were observed in the selectivities of the complexes for MMR-deficient cells. Compounds with hydrophilic ligands were highly selective, exhibiting preferential cytotoxicity in MMR-deficient cells at low concentrations and short incubation periods, whereas complexes with lipophilic ligands displayed poor cell-selectivity. It was discovered that all of the complexes localized to the nucleus in concentrations sufficient for mismatch binding; however, highly lipophilic complexes also exhibited high mitochondrial uptake. Significantly, these results support the notion that mitochondrial DNA is not the desired target for our metalloinsertor complexes; instead, selectivity stems from targeting mismatches in genomic DNA.

We have also explored the potential for metalloinsertors to be developed into more complex structures with multiple functionalities that could either enhance their overall potency or impart mismatch selectivity onto other therapeutic cargo. We have constructed a family of bifunctional metalloinsertor conjugates incorporating cis-platinum, each unique in its chemical structure, DNA binding interactions, and biological activity. The study of these complexes in MMR-deficient cells has established that the cell-selective biological activity of rhodium metalloinsertors proceeds through a critical cellular pathway leading to necrosis.

We further explored the underlying mechanisms surrounding the biological response to mismatch recognition by metalloinsertors in the genome. Immunofluorescence assays of MMR-deficient and MMR-proficient cells revealed that a critical biomarker for DNA damage, phosphorylation of histone H2AX (γH2AX) rapidly accumulates in response to metalloinsertor treatment, signifying the induction of double strand breaks in the genome. Significantly, we have discovered that our metalloinsertor complexes selectively inhibit transcription in MMR-deficient cells, which may be a crucial checkpoint in the eventual breakdown of the cell via necrosis. Additionally, preliminary in vivo studies have revealed the capability of these compounds to traverse the complex environments of multicellular organisms and accumulate in MMR-deficient tumors. Our ever-increasing understanding of metalloinsertors, as well as the development of new generations of complexes both monofunctional and bifunctional, enables their continued progress into the clinic as promising new chemotherapeutic agents.