5 resultados para NICKEL(II)

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

I.

Various studies designed to elucidate the electronic structure of the arsenic donor ligand, o-phenylenebisdimethylarsine (diarsine), have been carried out. The electronic spectrum of diarsine has been measured at 300 and 77˚K. Electronic spectra of the molecular complexes of various substituted organoarsines and phosphines with tetracyanoethylene have been measured and used to estimate the relative ionization potentials of these molecules.

Uv photolysis of arsines in frozen solution (96˚K) has yielded thermally labile, paramagnetic products. These include the molecular cations of the photolyzed compounds. The species (diars)+ exhibits hyper-fine splitting due to two equivalent 75As(I=3/2) nuclei. Resonances due to secondary products are reported and assignments discussed.

Evidence is presented for the involvement of d-orbitals in the bonding of arsines. In (diars)+ there is mixing of arsenic “lone-pair” orbitals with benzene ring π-orbitals.

II.

Detailed electronic spectral measurements at 300 and 77˚K have been carried out on five-coordinate complexes of low-spin nickel(II), including complexes of both trigonal bipyramidal (TBP) and square pyramidal (SPY) geometry. TBP complexes are of the form NiLX+ (X=halide or cyanide,

L = Qƭ(CH2)3As(CH3)2]3 or

P [hexagon - Q'CH3] , Q = P, As,

Q’=S, Se).

The electronic spectra of these compounds exhibit a novel feature at low temperature. The first ligand field band, which is asymmetric in the room temperature solution spectrum, is considerably more symmetrical at 77˚K. This effect is interpreted in terms of changes in the structure of the complex.

The SPY complexes are of the form Ni(diars)2Xz (X=CL, Br, CNS, CN, thiourea, NO2, As). On the basis of the spectral results, the d-level ordering is concluded to be xy ˂ xz, yz ˂ z2 ˂˂ x2 - y2. Central to this interpretation is identification of the symmetry-allowed 1A11E (xz, yz → x2 - y2) transition. This assignment was facilitated by the low temperature measurements.

An assignment of the charge-transfer spectra of the five-coordinate complexes is reported, and electronic spectral criteria for distinguishing the two limiting geometries are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coarsening kinetics of Ni3 Si(γ') precipitate in a binary Ni-Si alloy containing 6.5 wt. % silicon was studied by magnetic techniques and transmission electronmicroscopy. A calibration curve was established to determine the concentration of silicon in the matrix. The variation of the Si content of the Ni-rich matrix as a function of time follows Lifshitz and Wagner theory for diffusion controlled coarsening phenomena. The estimated values of equilibrium solubility of silicon in the matrix represent the true coherent equilibrium solubilities.

The experimental particle-size distributions and average particle size were determined from dark field electron micrographs. The average particle size varies linearly with t-1/3 as suggested by Lifshitz and Wagner. The experimental distributions of particle sizes differ slightly from the theoretical curve at the early stages of aging, but the agreement is satisfactory at the later stages. The values of diffusion coefficient of silicon, interfacial free energy and activation energy were calculated from the results of coarsening kinetics. The experimental value of effective diffusion coefficient is in satisfactory agreement with the value predicted by the application of irreversible the rmodynamics to the process of volume constrained growth of coherent precipitate during coarsening. The coherent γ' particles in Ni-Sialloy unlike those in Ni-Al and Ni-Ti seem to lose coherency at high temperature. A mechanism for the formation of semi-coherent precipitate is suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nickel-containing catalysts are developed to oligomerize light olefins. Two nickel-containing zincosilicates (Ni-CIT-6 and Ni-Zn-MCM-41) and two nickel-containing aluminosilicates (Ni-HiAl-BEA and Ni-USY) are synthesized as catalysts to oligomerize propylene into C3n (C6 and C9) products. All catalysts oligomerize propylene, with the zincosilicates demonstrating higher average selectivities to C3n products, likely due to the reduced acidity of the Zn heteroatom.

To test whether light alkanes can be incorporated into this oligomerization reaction, a supported homogeneous catalyst is combined with Ni-containing zincosilicates. The homogeneous catalyst is included to provide dehydrogenation/hydrogenation functions. When this tandem catalyst system is evaluated using a propylene/n-butane feed, no significant integration of alkanes are observed.

Ni-containing zincosilicates are reacted with 1-butene and an equimolar propylene/1-butene mixture to study other olefinic feeds. Further, other divalent metal cations such as Mn2+, Co2+, Cu2+, and Zn2+ are exchanged onto CIT-6 samples to investigate stability and potential use for other reactions. Co-CIT-6 oligomerizes propylene, albeit less effectively than Ni-CIT-6. The other M-CIT-6 samples, while not able to oligomerize light olefins, may be useful for other reactions, such as deNOx.

Molecular sieves are synthesized, characterized, and used to catalyze the methanol-to-olefins (MTO) reaction. The Al concentration in SSZ-13 samples is varied to investigate the effect of Al number on MTO reactivity when compared to a SAPO-34 sample with only isolated Si Brønsted acid sites. These SSZ-13 samples display reduced transient selectivity behavior and extended reaction lifetimes as Si/Al increases; attributable to fewer paired Al sites. MTO reactivity for the higher Si/Al SSZ-13s resembles the SAPO-34 sample, suggesting that both catalysts owe their stable reaction behavior to isolated Brønsted acid sites.

Zeolites CHA and RHO are prepared without the use of organic structure-directing agents (OSDAs), dealuminated by steam treatments (500°C-800°C), and evaluated as catalysts for the MTO reaction. The effects of temperature and steam partial pressure during steaming are investigated. X-ray diffraction (XRD) and Ar physisorption show that steaming causes partial structural collapse of the zeolite, with degradation increasing with steaming temperature. 27Al MAS NMR spectra of steamed materials reveal the presence of tetrahedral, pentacoordinate, and hexacoordinate aluminum.

Proton forms of as-synthesized CHA (Si/Al=2.4) and RHO (Si/Al=2.8) rapidly deactivate under MTO testing conditions (400°C, atmospheric pressure). CHA samples steamed at 600°C performed best among samples tested, showing increased olefin selectivities and catalyst lifetime. Acid washing these steamed samples further improved activity. Reaction results for RHO were similar to CHA, with the RHO sample steamed at 800°C producing the highest light olefin selectivities. Catalyst lifetime and C2-C3 olefin selectivities increase with increasing reaction temperature for both CHA-type and RHO-type steamed samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Expedient synthetic approaches to the highly functionalized polycyclic alkaloids communesin F and perophoramidine are described using a unified approach featuring a key decarboxylative allylic alkylation to access a crucial and highly congested 3,3-disubstituted oxindole. Described are two distinct, stereoselective alkylations that produce structures in divergent diastereomeric series possessing the critical vicinal all-carbon quaternary centers needed for each synthesis. Synthetic studies toward these challenging core structures have revealed a number of unanticipated modes of reactivity inherent to these complex alkaloid scaffolds. Finally, a previously unknown mild and efficient deprotection protocol for the o-nitrobenzyl group is disclosed – this serendipitous discovery permitted a concise endgame for the formal syntheses of both communesin F and perophoramidine.

In addition, the atroposelective synthesis of PINAP ligands has been accomplished via a palladium-catalyzed C–P coupling process through dynamic kinetic resolution. These catalytic conditions allow access to a wide variety of alkoxy- and benzyloxy-substituted PINAP ligands in high enantiomeric excess.

An efficient and exceptionally mild intramolecular nickel-catalyzed carbon–oxygen bond-forming reaction between vinyl halides and primary, secondary, and tertiary alcohols has been achieved. This operationally simple method allows direct access to cyclic vinyl ethers in high yields in a single step.

Finally, synthetic studies toward polycyclic ineleganolide are described. The entire fragmented carbon framework has been constructed from this work. Highly (Z)-selective olefination was achieved by the method by the Ando group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Films of Ti-Si-N obtained by reactively sputtering a TiSi_2, a Ti_5Si_3, or a Ti_3Si target are either amorphous or nanocrystalline in structure. The atomic density of some films exceeds 10^23 at./cm^3. The room-temperature resistivity of the films increases with the Si and the N content. A thermal treatment in vacuum at 700 °C for 1 hour decreases the resistivity of the Ti-rich films deposited from the Ti_5Si_3 or the Ti_3Si target, but increases that of the Si-rich films deposited from the TiSi_2 target when the nitrogen content exceeds about 30 at. %.

Ti_(34)Si_(23)N_(43) deposited from the Ti_5Si_3 target is an excellent diffusion barrier between Si and Cu. This film is a mixture of nanocrystalline TiN and amorphous SiN_x. Resistivity measurement from 80 K to 1073 K reveals that this film is electrically semiconductor-like as-deposited, and that it becomes metal-like after an hour annealing at 1000 °C in vacuum. A film of about 100 nm thick, with a resistivity of 660 µΩcm, maintains the stability of Si n+p shallow junction diodes with a 400 nm Cu overlayer up to 850 °C upon 30 min vacuum annealing. When used between Si and Al, the maximum temperature of stability is 550 °C for 30 min. This film can be etched in a CF_4/O_2 plasma.

The amorphous ternary metallic alloy Zr_(60)Al_(15)Ni_(25) was oxidized in dry oxygen in the temperature range 310 °C to 410 °C. Rutherford backscattering and cross-sectional transmission electron microscopy studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel is depleted from the oxide and enriched in the amorphous alloy below the oxide/alloy interface. The oxide layer thickness grows parabolically with the annealing duration, with a transport constant of 2.8x10^(-5) m^2/s x exp(-1.7 eV/kT). The oxidation rate is most likely controlled by the Ni diffusion in the amorphous alloy.

At later stages of the oxidation process, precipitates of nanocrystalline ZrO_2 appear in the oxide near the interface. Finally, two intermetallic phases nucleate and grow simultaneously in the alloy, one at the interface and one within the alloy.