6 resultados para NEUTRON ACTVATION ANALYSIS
em CaltechTHESIS
Resumo:
Secondary-ion mass spectrometry (SIMS), electron probe analysis (EPMA), analytical scanning electron microscopy (SEM) and infrared (IR) spectroscopy were used to determine the chemical composition and the mineralogy of sub-micrometer inclusions in cubic diamonds and in overgrowths (coats) on octahedral diamonds from Zaire, Botswana, and some unknown localities.
The inclusions are sub-micrometer in size. The typical diameter encountered during transmission electron microscope (TEM) examination was 0.1-0.5 µm. The micro-inclusions are sub-rounded and their shape is crystallographically controlled by the diamond. Normally they are not associated with cracks or dislocations and appear to be well isolated within the diamond matrix. The number density of inclusions is highly variable on any scale and may reach 10^(11) inclusions/cm^3 in the most densely populated zones. The total concentration of metal oxides in the diamonds varies between 20 and 1270 ppm (by weight).
SIMS analysis yields the average composition of about 100 inclusions contained in the sputtered volume. Comparison of analyses of different volumes of an individual diamond show roughly uniform composition (typically ±10% relative). The variation among the average compositions of different diamonds is somewhat greater (typically ±30%). Nevertheless, all diamonds exhibit similar characteristics, being rich in water, carbonate, SiO_2, and K_2O, and depleted in MgO. The composition of micro-inclusions in most diamonds vary within the following ranges: SiO_2, 30-53%; K_2O, 12-30%; CaO, 8-19%; FeO, 6-11%; Al_2O_3, 3-6%; MgO, 2-6%; TiO_2, 2-4%; Na_2O, 1-5%; P_2O_5, 1-4%; and Cl, 1-3%. In addition, BaO, 1-4%; SrO, 0.7-1.5%; La_2O_3, 0.1-0.3%; Ce_2O_3, 0.3-0.5%; smaller amounts of other rare-earth elements (REE), as well as Mn, Th, and U were also detected by instrumental neutron activation analysis (INAA). Mg/(Fe+Mg), 0.40-0.62 is low compared with other mantle derived phases; K/ AI ratios of 2-7 are very high, and the chondrite-normalized Ce/Eu ratios of 10-21 are also high, indicating extremely fractionated REE patterns.
SEM analyses indicate that individual inclusions within a single diamond are roughly of similar composition. The average composition of individual inclusions as measured with the SEM is similar to that measured by SIMS. Compositional variations revealed by the SEM are larger than those detected by SIMS and indicate a small variability in the composition of individual inclusions. No compositions of individual inclusions were determined that might correspond to mono-mineralic inclusions.
IR spectra of inclusion- bearing zones exhibit characteristic absorption due to: (1) pure diamonds, (2) nitrogen and hydrogen in the diamond matrix; and (3) mineral phases in the micro-inclusions. Nitrogen concentrations of 500-1100 ppm, typical of the micro-inclusion-bearing zones, are higher than the average nitrogen content of diamonds. Only type IaA centers were detected by IR. A yellow coloration may indicate small concentration of type IB centers.
The absorption due to the micro-inclusions in all diamonds produces similar spectra and indicates the presence of hydrated sheet silicates (most likely, Fe-rich clay minerals), carbonates (most likely calcite), and apatite. Small quantities of molecular CO_2 are also present in most diamonds. Water is probably associated with the silicates but the possibility of its presence as a fluid phase cannot be excluded. Characteristic lines of olivine, pyroxene and garnet were not detected and these phases cannot be significant components of the inclusions. Preliminary quantification of the IR data suggests that water and carbonate account for, on average, 20-40 wt% of the micro-inclusions.
The composition and mineralogy of the micro-inclusions are completely different from those of the more common, larger inclusions of the peridotitic or eclogitic assemblages. Their bulk composition resembles that of potassic magmas, such as kimberlites and lamproites, but is enriched in H_2O, CO_3, K_2O, and incompatible elements, and depleted in MgO.
It is suggested that the composition of the micro-inclusions represents a volatile-rich fluid or a melt trapped by the diamond during its growth. The high content of K, Na, P, and incompatible elements suggests that the trapped material found in the micro-inclusions may represent an effective metasomatizing agent. It may also be possible that fluids of similar composition are responsible for the extreme enrichment of incompatible elements documented in garnet and pyroxene inclusions in diamonds.
The origin of the fluid trapped in the micro-inclusions is still uncertain. It may have been formed by incipient melting of a highly metasomatized mantle rocks. More likely, it is the result of fractional crystallization of a potassic parental magma at depth. In either case, the micro-inclusions document the presence of highly potassic fluids or melts at depths corresponding to the diamond stability field in the upper mantle. The phases presently identified in the inclusions are believed to be the result of closed system reactions at lower pressures.
Resumo:
This thesis presents a study of the dynamical stability of nascent neutron stars resulting from the accretion induced collapse of rapidly rotating white dwarfs.
Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are constructed by assuming that the neutron stars have the same masses, angular momenta, and specific angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, surrounded by a massive accretion torus extending to hundreds of kilometers from the rotation axis. The ratio of the rotational kinetic energy to gravitational binding energy, β, of these neutron stars is all found to be less than 0.27.
Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the linearized hydrodynamical equations. A dynamical bar-mode instability is observed when the β of the star is greater than the critical value βd ≈ 0.25. It is expected that the unstable mode will persist until a substantial amount of angular momentum is carried away by gravitational radiation. The detectability of these sources is studied and it is estimated that LIGO II is unlikely to detect them unless the event rate is greater than 10-6/year/galaxy.
All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 are carried out using Newtonian hydrodynamics and gravity. Chapter 4 studies the relativistic effects on the structure of these neutron stars. New techniques are developed and used to construct neutron star models to the first post-Newtonian (1PN) order. The structures of the 1PN models are qualitatively similar to the corresponding Newtonian models, but the values of β are somewhat smaller. The maximum β for these 1PN neutron stars is found to be 0.24, which is 8% smaller than the Newtonian result (0.26). However, relativistic effects will also change the critical value βd. A detailed post-Newtonian stability analysis has yet to be carried out to study the relativistic effects on the dynamical stability of these neutron stars.
Resumo:
The free neutron beta decay correlation A0 between neutron polarization and electron emission direction provides the strongest constraint on the ratio λ = gA/gV of the Axial-vector to Vector coupling constants in Weak decay. In conjunction with the CKM Matrix element Vud and the neutron lifetime τn, λ provides a test of Standard Model assumptions for the Weak interaction. Leading high-precision measurements of A0 and τn in the 1995-2005 time period showed discrepancies with prior measurements and Standard Model predictions for the relationship between λ, τn, and Vud. The UCNA experiment was developed to measure A0 from decay of polarized ultracold neutrons (UCN), providing a complementary determination of λ with different systematic uncertainties from prior cold neutron beam experiments. This dissertation describes analysis of the dataset collected by UCNA in 2010, with emphasis on detector response calibrations and systematics. The UCNA measurement is placed in the context of the most recent τn results and cold neutron A0 experiments.
Resumo:
Detailed pulsed neutron measurements have been performed in graphite assemblies ranging in size from 30.48 cm x 38.10 cm x 38.10 cm to 91.44 cm x 66.67 cm x 66.67 cm. Results of the measurement have been compared to a modeled theoretical computation.
In the first set of experiments, we measured the effective decay constant of the neutron population in ten graphite stacks as a function of time after the source burst. We found the decay to be non-exponential in the six smallest assemblies, while in three larger assemblies the decay was exponential over a significant portion of the total measuring interval. The decay in the largest stack was exponential over the entire ten millisecond measuring interval. The non-exponential decay mode occurred when the effective decay constant exceeded 1600 sec^( -1).
In a second set of experiments, we measured the spatial dependence of the neutron population in four graphite stacks as a function of time after the source pulse. By doing an harmonic analysis of the spatial shape of the neutron distribution, we were able to compute the effective decay constants of the first two spatial modes. In addition, we were able to compute the time dependent effective wave number of neutron distribution in the stacks.
Finally, we used a Laplace transform technique and a simple modeled scattering kernel to solve a diffusion equation for the time and energy dependence of the neutron distribution in the graphite stacks. Comparison of these theoretical results with the results of the first set of experiments indicated that more exact theoretical analysis would be required to adequately describe the experiments.
The implications of our experimental results for the theory of pulsed neutron experiments in polycrystalline media are discussed in the last chapter.
Resumo:
An exact solution to the monoenergetic Boltzmann equation is obtained for the case of a plane isotropic burst of neutrons introduced at the interface separating two adjacent, dissimilar, semi-infinite media. The method of solution used is to remove the time dependence by a Laplace transformation, solve the transformed equation by the normal mode expansion method, and then invert to recover the time dependence.
The general result is expressed as a sum of definite, multiple integrals, one of which contains the uncollided wave of neutrons originating at the source plane. It is possible to obtain a simplified form for the solution at the interface, and certain numerical calculations are made there.
The interface flux in two adjacent moderators is calculated and plotted as a function of time for several moderator materials. For each case it is found that the flux decay curve has an asymptotic slope given accurately by diffusion theory. Furthermore, the interface current is observed to change directions when the scattering and absorption cross sections of the two moderator materials are related in a certain manner. More specifically, the reflection process in two adjacent moderators appears to depend initially on the scattering properties and for long times on the absorption properties of the media.
This analysis contains both the single infinite and semi-infinite medium problems as special cases. The results in these two special cases provide a check on the accuracy of the general solution since they agree with solutions of these problems obtained by separate analyses.
Resumo:
This document introduces the planned new search for the neutron Electric Dipole Moment at the Spallation Neutron Source at the Oak Ridge National Laboratory. A spin precession measurement is to be carried out using Ultracold neutrons diluted in a superfluid Helium bath at T = 0.5 K, where spin polarized 3He atoms act as detector of the neutron spin polarization. This manuscript describes some of the key aspects of the planned experiment with the contributions from Caltech to the development of the project.
Techniques used in the design of magnet coils for Nuclear Magnetic Resonance were adapted to the geometry of the experiment. Described is an initial design approach using a pair of coils tuned to shield outer conductive elements from resistive heat loads, while inducing an oscillating field in the measurement volume. A small prototype was constructed to test the model of the field at room temperature.
A large scale test of the high voltage system was carried out in a collaborative effort at the Los Alamos National Laboratory. The application and amplification of high voltage to polished steel electrodes immersed in a superfluid Helium bath was studied, as well as the electrical breakdown properties of the electrodes at low temperatures. A suite of Monte Carlo simulation software tools to model the interaction of neutrons, 3He atoms, and their spins with the experimental magnetic and electric fields was developed and implemented to further the study of expected systematic effects of the measurement, with particular focus on the false Electric Dipole Moment induced by a Geometric Phase akin to Berry’s phase.
An analysis framework was developed and implemented using unbinned likelihood to fit the time modulated signal expected from the measurement data. A collaborative Monte Carlo data set was used to test the analysis methods.