5 resultados para Monocular velocity

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large quantities of teleseismic short-period seismograms recorded at SCARLET provide travel time, apparent velocity and waveform data for study of upper mantle compressional velocity structure. Relative array analysis of arrival times from distant (30° < Δ < 95°) earthquakes at all azimuths constrains lateral velocity variations beneath southern California. We compare dT/dΔ back azimuth and averaged arrival time estimates from the entire network for 154 events to the same parameters derived from small subsets of SCARLET. Patterns of mislocation vectors for over 100 overlapping subarrays delimit the spatial extent of an east-west striking, high-velocity anomaly beneath the Transverse Ranges. Thin lens analysis of the averaged arrival time differences, called 'net delay' data, requires the mean depth of the corresponding lens to be more than 100 km. Our results are consistent with the PKP-delay times of Hadley and Kanamori (1977), who first proposed the high-velocity feature, but we place the anomalous material at substantially greater depths than their 40-100 km estimate.

Detailed analysis of travel time, ray parameter and waveform data from 29 events occurring in the distance range 9° to 40° reveals the upper mantle structure beneath an oceanic ridge to depths of over 900 km. More than 1400 digital seismograms from earthquakes in Mexico and Central America yield 1753 travel times and 58 dT/dΔ measurements as well as high-quality, stable waveforms for investigation of the deep structure of the Gulf of California. The result of a travel time inversion with the tau method (Bessonova et al., 1976) is adjusted to fit the p(Δ) data, then further refined by incorporation of relative amplitude information through synthetic seismogram modeling. The application of a modified wave field continuation method (Clayton and McMechan, 1981) to the data with the final model confirms that GCA is consistent with the entire data set and also provides an estimate of the data resolution in velocity-depth space. We discover that the upper mantle under this spreading center has anomalously slow velocities to depths of 350 km, and place new constraints on the shape of the 660 km discontinuity.

Seismograms from 22 earthquakes along the northeast Pacific rim recorded in southern California form the data set for a comparative investigation of the upper mantle beneath the Cascade Ranges-Juan de Fuca region, an ocean-continent transit ion. These data consist of 853 seismograms (6° < Δ < 42°) which produce 1068 travel times and 40 ray parameter estimates. We use the spreading center model initially in synthetic seismogram modeling, and perturb GCA until the Cascade Ranges data are matched. Wave field continuation of both data sets with a common reference model confirms that real differences exist between the two suites of seismograms, implying lateral variation in the upper mantle. The ocean-continent transition model, CJF, features velocities from 200 and 350 km that are intermediate between GCA and T7 (Burdick and Helmberger, 1978), a model for the inland western United States. Models of continental shield regions (e.g., King and Calcagnile, 1976) have higher velocities in this depth range, but all four model types are similar below 400 km. This variation in rate of velocity increase with tectonic regime suggests an inverse relationship between velocity gradient and lithospheric age above 400 km depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial objective of Part I was to determine the nature of upper mantle discontinuities, the average velocities through the mantle, and differences between mantle structure under continents and oceans by the use of P'dP', the seismic core phase P'P' (PKPPKP) that reflects at depth d in the mantle. In order to accomplish this, it was found necessary to also investigate core phases themselves and their inferences on core structure. P'dP' at both single stations and at the LASA array in Montana indicates that the following zones are candidates for discontinuities with varying degrees of confidence: 800-950 km, weak; 630-670 km, strongest; 500-600 km, strong but interpretation in doubt; 350-415 km, fair; 280-300 km, strong, varying in depth; 100-200 km, strong, varying in depth, may be the bottom of the low-velocity zone. It is estimated that a single station cannot easily discriminate between asymmetric P'P' and P'dP' for lead times of about 30 sec from the main P'P' phase, but the LASA array reduces this uncertainty range to less than 10 sec. The problems of scatter of P'P' main-phase times, mainly due to asymmetric P'P', incorrect identification of the branch, and lack of the proper velocity structure at the velocity point, are avoided and the analysis shows that one-way travel of P waves through oceanic mantle is delayed by 0.65 to 0.95 sec relative to United States mid-continental mantle.

A new P-wave velocity core model is constructed from observed times, dt/dΔ's, and relative amplitudes of P'; the observed times of SKS, SKKS, and PKiKP; and a new mantle-velocity determination by Jordan and Anderson. The new core model is smooth except for a discontinuity at the inner-core boundary determined to be at a radius of 1215 km. Short-period amplitude data do not require the inner core Q to be significantly lower than that of the outer core. Several lines of evidence show that most, if not all, of the arrivals preceding the DF branch of P' at distances shorter than 143° are due to scattering as proposed by Haddon and not due to spherically symmetric discontinuities just above the inner core as previously believed. Calculation of the travel-time distribution of scattered phases and comparison with published data show that the strongest scattering takes place at or near the core-mantle boundary close to the seismic station.

In Part II, the largest events in the San Fernando earthquake series, initiated by the main shock at 14 00 41.8 GMT on February 9, 1971, were chosen for analysis from the first three months of activity, 87 events in all. The initial rupture location coincides with the lower, northernmost edge of the main north-dipping thrust fault and the aftershock distribution. The best focal mechanism fit to the main shock P-wave first motions constrains the fault plane parameters to: strike, N 67° (± 6°) W; dip, 52° (± 3°) NE; rake, 72° (67°-95°) left lateral. Focal mechanisms of the aftershocks clearly outline a downstep of the western edge of the main thrust fault surface along a northeast-trending flexure. Faulting on this downstep is left-lateral strike-slip and dominates the strain release of the aftershock series, which indicates that the downstep limited the main event rupture on the west. The main thrust fault surface dips at about 35° to the northeast at shallow depths and probably steepens to 50° below a depth of 8 km. This steep dip at depth is a characteristic of other thrust faults in the Transverse Ranges and indicates the presence at depth of laterally-varying vertical forces that are probably due to buckling or overriding that causes some upward redirection of a dominant north-south horizontal compression. Two sets of events exhibit normal dip-slip motion with shallow hypocenters and correlate with areas of ground subsidence deduced from gravity data. Several lines of evidence indicate that a horizontal compressional stress in a north or north-northwest direction was added to the stresses in the aftershock area 12 days after the main shock. After this change, events were contained in bursts along the downstep and sequencing within the bursts provides evidence for an earthquake-triggering phenomenon that propagates with speeds of 5 to 15 km/day. Seismicity before the San Fernando series and the mapped structure of the area suggest that the downstep of the main fault surface is not a localized discontinuity but is part of a zone of weakness extending from Point Dume, near Malibu, to Palmdale on the San Andreas fault. This zone is interpreted as a decoupling boundary between crustal blocks that permits them to deform separately in the prevalent crustal-shortening mode of the Transverse Ranges region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis is to develop a framework to conduct velocity resolved - scalar modeled (VR-SM) simulations, which will enable accurate simulations at higher Reynolds and Schmidt (Sc) numbers than are currently feasible. The framework established will serve as a first step to enable future simulation studies for practical applications. To achieve this goal, in-depth analyses of the physical, numerical, and modeling aspects related to Sc>>1 are presented, specifically when modeling in the viscous-convective subrange. Transport characteristics are scrutinized by examining scalar-velocity Fourier mode interactions in Direct Numerical Simulation (DNS) datasets and suggest that scalar modes in the viscous-convective subrange do not directly affect large-scale transport for high Sc. Further observations confirm that discretization errors inherent in numerical schemes can be sufficiently large to wipe out any meaningful contribution from subfilter models. This provides strong incentive to develop more effective numerical schemes to support high Sc simulations. To lower numerical dissipation while maintaining physically and mathematically appropriate scalar bounds during the convection step, a novel method of enforcing bounds is formulated, specifically for use with cubic Hermite polynomials. Boundedness of the scalar being transported is effected by applying derivative limiting techniques, and physically plausible single sub-cell extrema are allowed to exist to help minimize numerical dissipation. The proposed bounding algorithm results in significant performance gain in DNS of turbulent mixing layers and of homogeneous isotropic turbulence. Next, the combined physical/mathematical behavior of the subfilter scalar-flux vector is analyzed in homogeneous isotropic turbulence, by examining vector orientation in the strain-rate eigenframe. The results indicate no discernible dependence on the modeled scalar field, and lead to the identification of the tensor-diffusivity model as a good representation of the subfilter flux. Velocity resolved - scalar modeled simulations of homogeneous isotropic turbulence are conducted to confirm the behavior theorized in these a priori analyses, and suggest that the tensor-diffusivity model is ideal for use in the viscous-convective subrange. Simulations of a turbulent mixing layer are also discussed, with the partial objective of analyzing Schmidt number dependence of a variety of scalar statistics. Large-scale statistics are confirmed to be relatively independent of the Schmidt number for Sc>>1, which is explained by the dominance of subfilter dissipation over resolved molecular dissipation in the simulations. Overall, the VR-SM framework presented is quite effective in predicting large-scale transport characteristics of high Schmidt number scalars, however, it is determined that prediction of subfilter quantities would entail additional modeling intended specifically for this purpose. The VR-SM simulations presented in this thesis provide us with the opportunity to overlap with experimental studies, while at the same time creating an assortment of baseline datasets for future validation of LES models, thereby satisfying the objectives outlined for this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part 1 of this thesis is about the 24 November, 1987, Superstition Hills earthquakes. The Superstition Hills earthquakes occurred in the western Imperial Valley in southern California. The earthquakes took place on a conjugate fault system consisting of the northwest-striking right-lateral Superstition Hills fault and a previously unknown Elmore Ranch fault, a northeast-striking left-lateral structure defined by surface rupture and a lineation of hypocenters. The earthquake sequence consisted of foreshocks, the M_s 6.2 first main shock, and aftershocks on the Elmore Ranch fault followed by the M_s 6.6 second main shock and aftershocks on the Superstition Hills fault. There was dramatic surface rupture along the Superstition Hills fault in three segments: the northern segment, the southern segment, and the Wienert fault.

In Chapter 2, M_L≥4.0 earthquakes from 1945 to 1971 that have Caltech catalog locations near the 1987 sequence are relocated. It is found that none of the relocated earthquakes occur on the southern segment of the Superstition Hills fault and many occur at the intersection of the Superstition Hills and Elmore Ranch faults. Also, some other northeast-striking faults may have been active during that time.

Chapter 3 discusses the Superstition Hills earthquake sequence using data from the Caltech-U.S.G.S. southern California seismic array. The earthquakes are relocated and their distribution correlated to the type and arrangement of the basement rocks. The larger earthquakes occur only where continental crystalline basement rocks are present. The northern segment of the Superstition Hills fault has more aftershocks than the southern segment.

An inversion of long period teleseismic data of the second mainshock of the 1987 sequence, along the Superstition Hills fault, is done in Chapter 4. Most of the long period seismic energy seen teleseismically is radiated from the southern segment of the Superstition Hills fault. The fault dip is near vertical along the northern segment of the fault and steeply southwest dipping along the southern segment of the fault.

Chapter 5 is a field study of slip and afterslip measurements made along the Superstition Hills fault following the second mainshock. Slip and afterslip measurements were started only two hours after the earthquake. In some locations, afterslip more than doubled the coseismic slip. The northern and southern segments of the Superstition Hills fault differ in the proportion of coseismic and postseismic slip to the total slip.

The northern segment of the Superstition Hills fault had more aftershocks, more historic earthquakes, released less teleseismic energy, and had a smaller proportion of afterslip to total slip than the southern segment. The boundary between the two segments lies at a step in the basement that separates a deeper metasedimentary basement to the south from a shallower crystalline basement to the north.

Part 2 of the thesis deals with the three-dimensional velocity structure of southern California. In Chapter 7, an a priori three-dimensional crustal velocity model is constructed by partitioning southern California into geologic provinces, with each province having a consistent one-dimensional velocity structure. The one-dimensional velocity structures of each region were then assembled into a three-dimensional model. The three-dimension model was calibrated by forward modeling of explosion travel times.

In Chapter 8, the three-dimensional velocity model is used to locate earthquakes. For about 1000 earthquakes relocated in the Los Angeles basin, the three-dimensional model has a variance of the the travel time residuals 47 per cent less than the catalog locations found using a standard one-dimensional velocity model. Other than the 1987 Whittier earthquake sequence, little correspondence is seen between these earthquake locations and elements of a recent structural cross section of the Los Angeles basin. The Whittier sequence involved rupture of a north dipping thrust fault bounded on at least one side by a strike-slip fault. The 1988 Pasadena earthquake was deep left-lateral event on the Raymond fault. The 1989 Montebello earthquake was a thrust event on a structure similar to that on which the Whittier earthquake occurred. The 1989 Malibu earthquake was a thrust or oblique slip event adjacent to the 1979 Malibu earthquake.

At least two of the largest recent thrust earthquakes (San Fernando and Whittier) in the Los Angeles basin have had the extent of their thrust plane ruptures limited by strike-slip faults. This suggests that the buried thrust faults underlying the Los Angeles basin are segmented by strike-slip faults.

Earthquake and explosion travel times are inverted for the three-dimensional velocity structure of southern California in Chapter 9. The inversion reduced the variance of the travel time residuals by 47 per cent compared to the starting model, a reparameterized version of the forward model of Chapter 7. The Los Angeles basin is well resolved, with seismically slow sediments atop a crust of granitic velocities. Moho depth is between 26 and 32 km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equations of relativistic, perfect-fluid hydrodynamics are cast in Eulerian form using six scalar "velocity-potential" fields, each of which has an equation of evolution. These equations determine the motion of the fluid through the equation

Uʋ-1 (ø,ʋ + αβ,ʋ + ƟS,ʋ).

Einstein's equations and the velocity-potential hydrodynamical equations follow from a variational principle whose action is

I = (R + 16π p) (-g)1/2 d4x,

where R is the scalar curvature of spacetime and p is the pressure of the fluid. These equations are also cast into Hamiltonian form, with Hamiltonian density –T00 (-goo)-1/2.

The second variation of the action is used as the Lagrangian governing the evolution of small perturbations of differentially rotating stellar models. In Newtonian gravity this leads to linear dynamical stability criteria already known. In general relativity it leads to a new sufficient condition for the stability of such models against arbitrary perturbations.

By introducing three scalar fields defined by

ρ ᵴ = λ + x(xi + i)

(where ᵴ is the vector displacement of the perturbed fluid element, ρ is the mass-density, and i, is an arbitrary vector), the Newtonian stability criteria are greatly simplified for the purpose of practical applications. The relativistic stability criterion is not yet in a form that permits practical calculations, but ways to place it in such a form are discussed.