16 resultados para Missions, Spanish -- California.
em CaltechTHESIS
Resumo:
Motivated by recent MSL results where the ablation rate of the PICA heatshield was over-predicted, and staying true to the objectives outlined in the NASA Space Technology Roadmaps and Priorities report, this work focuses on advancing EDL technologies for future space missions.
Due to the difficulties in performing flight tests in the hypervelocity regime, a new ground testing facility called the vertical expansion tunnel is proposed. The adverse effects from secondary diaphragm rupture in an expansion tunnel may be reduced or eliminated by orienting the tunnel vertically, matching the test gas pressure and the accelerator gas pressure, and initially separating the test gas from the accelerator gas by density stratification. If some sacrifice of the reservoir conditions can be made, the VET can be utilized in hypervelocity ground testing, without the problems associated with secondary diaphragm rupture.
The performance of different constraints for the Rate-Controlled Constrained-Equilibrium (RCCE) method is investigated in the context of modeling reacting flows characteristic to ground testing facilities, and re-entry conditions. The effectiveness of different constraints are isolated, and new constraints previously unmentioned in the literature are introduced. Three main benefits from the RCCE method were determined: 1) the reduction in number of equations that need to be solved to model a reacting flow; 2) the reduction in stiffness of the system of equations needed to be solved; and 3) the ability to tabulate chemical properties as a function of a constraint once, prior to running a simulation, along with the ability to use the same table for multiple simulations.
Finally, published physical properties of PICA are compiled, and the composition of the pyrolysis gases that form at high temperatures internal to a heatshield is investigated. A necessary link between the composition of the solid resin, and the composition of the pyrolysis gases created is provided. This link, combined with a detailed investigation into a reacting pyrolysis gas mixture, allows a much needed consistent, and thorough description of many of the physical phenomena occurring in a PICA heatshield, and their implications, to be presented.
Through the use of computational fluid mechanics and computational chemistry methods, significant contributions have been made to advancing ground testing facilities, computational methods for reacting flows, and ablation modeling.
Resumo:
Cosmic birefringence (CB)---a rotation of photon-polarization plane in vacuum---is a generic signature of new scalar fields that could provide dark energy. Previously, WMAP observations excluded a uniform CB-rotation angle larger than a degree.
In this thesis, we develop a minimum-variance--estimator formalism for reconstructing direction-dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude improvement in sensitivity with incoming Planck data and future satellite missions. Next, we perform the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation between CMB temperature and the rotation for detecting the CB signal, for different quintessence models. We find that it may improve sensitivity in case of marginal detection, and provide an empirical handle for distinguishing details of new physics indicated by CB.
We then consider other parity-violating physics beyond standard models---in particular, a chiral inflationary-gravitational-wave background. We show that WMAP has no constraining power, while a cosmic-variance--limited experiment would be capable of detecting only a large parity violation. In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral gravity waves.
We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomogeneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with WMAP-7 data, and show that data from Planck should start approaching interesting portions of the EoR parameter space and can be used to exclude reionization tomographies with large ionized bubbles.
In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line from the EoR, we examine probability-distribution functions (PDFs) and difference PDFs of the simulated 21-cm brightness temperature, and discuss the information that can be recovered using these statistics. We find that PDFs are insensitive to details of small-scale physics, but highly sensitive to the properties of the ionizing sources and the size of ionized bubbles.
Finally, we discuss prospects for related future investigations.
Resumo:
The Lake Elsinore quadrangle covers about 250 square miles and includes parts of the southwest margin of the Perris Block, the Elsinore trough, the southeastern end of the Santa Ana Mountains, and the Elsinore Mountains.
The oldest rocks consist of an assemblage of metamorphics of igneous effusive and sedimentary origin, probably, for the most part, of Triassic age. They are intruded by diorite and various hypabyssal rocks, then in turn by granitic rocks, which occupy over 40 percent of the area. Following this last igneous activity of probable Lower Cretaceous age, an extended period of sedimentation started with the deposition of the marine Upper Cretaceous Chico formation and continued during the Paloecene under alternating marine and continental conditions on the margins of the blocks. A marine regression towards the north, during the Neocene, accounts for the younger Tertiary strata in the region under consideration.
Outpouring of basalts to the southeast indicates that igneous activity was resumed toward the close of the Tertiary. The fault zone, which characterizes the Elsinor trough, marks one of the major tectonic lines of southem California. It separates the upthrown and tilted block of the Santa Ana Mountains to the south from the Perris Block to the north.
Most of the faults are normal in type and nearly parallel to the general trend of the trough, or intersect each other at an acute angle. Vertical displacements generally exceed the horizontal ones and several periods of activity are recognized.
Tilting of Tertiary and older Quaternary sediments in the trough have produced broad synclinal structures which have been modified by subsequent faulting.
Five old surfaces of erosion are exposed on the highlands.
The mineral resources of the region are mainly high-grade clay deposits and mineral waters.
Resumo:
Crustal structure in Southern California is investigated using travel times from over 200 stations and thousands of local earthquakes. The data are divided into two sets of first arrivals representing a two-layer crust. The Pg arrivals have paths that refract at depths near 10 km and the Pn arrivals refract along the Moho discontinuity. These data are used to find lateral and azimuthal refractor velocity variations and to determine refractor topography.
In Chapter 2 the Pn raypaths are modeled using linear inverse theory. This enables statistical verification that static delays, lateral slowness variations and anisotropy are all significant parameters. However, because of the inherent size limitations of inverse theory, the full array data set could not be processed and the possible resolution was limited. The tomographic backprojection algorithm developed for Chapters 3 and 4 avoids these size problems. This algorithm allows us to process the data sequentially and to iteratively refine the solution. The variance and resolution for tomography are determined empirically using synthetic structures.
The Pg results spectacularly image the San Andreas Fault, the Garlock Fault and the San Jacinto Fault. The Mojave has slower velocities near 6.0 km/s while the Peninsular Ranges have higher velocities of over 6.5 km/s. The San Jacinto block has velocities only slightly above the Mojave velocities. It may have overthrust Mojave rocks. Surprisingly, the Transverse Ranges are not apparent at Pg depths. The batholiths in these mountains are possibly only surficial.
Pn velocities are fast in the Mojave, slow in Southern California Peninsular Ranges and slow north of the Garlock Fault. Pn anisotropy of 2% with a NWW fast direction exists in Southern California. A region of thin crust (22 km) centers around the Colorado River where the crust bas undergone basin and range type extension. Station delays see the Ventura and Los Angeles Basins but not the Salton Trough, where high velocity rocks underlie the sediments. The Transverse Ranges have a root in their eastern half but not in their western half. The Southern Coast Ranges also have a thickened crust but the Peninsular Ranges have no major root.
Resumo:
Seismic reflection methods have been extensively used to probe the Earth's crust and suggest the nature of its formative processes. The analysis of multi-offset seismic reflection data extends the technique from a reconnaissance method to a powerful scientific tool that can be applied to test specific hypotheses. The treatment of reflections at multiple offsets becomes tractable if the assumptions of high-frequency rays are valid for the problem being considered. Their validity can be tested by applying the methods of analysis to full wave synthetics.
Three studies illustrate the application of these principles to investigations of the nature of the crust in southern California. A survey shot by the COCORP consortium in 1977 across the San Andreas fault near Parkfield revealed events in the record sections whose arrival time decreased with offset. The reflectors generating these events are imaged using a multi-offset three-dimensional Kirchhoff migration. Migrations of full wave acoustic synthetics having the same limitations in geometric coverage as the field survey demonstrate the utility of this back projection process for imaging. The migrated depth sections show the locations of the major physical boundaries of the San Andreas fault zone. The zone is bounded on the southwest by a near-vertical fault juxtaposing a Tertiary sedimentary section against uplifted crystalline rocks of the fault zone block. On the northeast, the fault zone is bounded by a fault dipping into the San Andreas, which includes slices of serpentinized ultramafics, intersecting it at 3 km depth. These interpretations can be made despite complications introduced by lateral heterogeneities.
In 1985 the Calcrust consortium designed a survey in the eastern Mojave desert to image structures in both the shallow and the deep crust. Preliminary field experiments showed that the major geophysical acquisition problem to be solved was the poor penetration of seismic energy through a low-velocity surface layer. Its effects could be mitigated through special acquisition and processing techniques. Data obtained from industry showed that quality data could be obtained from areas having a deeper, older sedimentary cover, causing a re-definition of the geologic objectives. Long offset stationary arrays were designed to provide reversed, wider angle coverage of the deep crust over parts of the survey. The preliminary field tests and constant monitoring of data quality and parameter adjustment allowed 108 km of excellent crustal data to be obtained.
This dataset, along with two others from the central and western Mojave, was used to constrain rock properties and the physical condition of the crust. The multi-offset analysis proceeded in two steps. First, an increase in reflection peak frequency with offset is indicative of a thinly layered reflector. The thickness and velocity contrast of the layering can be calculated from the spectral dispersion, to discriminate between structures resulting from broad scale or local effects. Second, the amplitude effects at different offsets of P-P scattering from weak elastic heterogeneities indicate whether the signs of the changes in density, rigidity, and Lame's parameter at the reflector agree or are opposed. The effects of reflection generation and propagation in a heterogeneous, anisotropic crust were contained by the design of the experiment and the simplicity of the observed amplitude and frequency trends. Multi-offset spectra and amplitude trend stacks of the three Mojave Desert datasets suggest that the most reflective structures in the middle crust are strong Poisson's ratio (σ) contrasts. Porous zones or the juxtaposition of units of mutually distant origin are indicated. Heterogeneities in σ increase towards the top of a basal crustal zone at ~22 km depth. The transition to the basal zone and to the mantle include increases in σ. The Moho itself includes ~400 m layering having a velocity higher than that of the uppermost mantle. The Moho maintains the same configuration across the Mojave despite 5 km of crustal thinning near the Colorado River. This indicates that Miocene extension there either thinned just the basal zone, or that the basal zone developed regionally after the extensional event.
Resumo:
The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.
In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.
Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.
In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.
Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.
Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.
Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.
Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.
Resumo:
The negative impacts of ambient aerosol particles, or particulate matter (PM), on human health and climate are well recognized. However, owing to the complexity of aerosol particle formation and chemical evolution, emissions control strategies remain difficult to develop in a cost effective manner. In this work, three studies are presented to address several key issues currently stymieing California's efforts to continue improving its air quality.
Gas-phase organic mass (GPOM) and CO emission factors are used in conjunction with measured enhancements in oxygenated organic aerosol (OOA) relative to CO to quantify the significant lack of closure between expected and observed organic aerosol concentrations attributable to fossil-fuel emissions. Two possible conclusions emerge from the analysis to yield consistency with the ambient organic data: (1) vehicular emissions are not a dominant source of anthropogenic fossil SOA in the Los Angeles Basin, or (2) the ambient SOA mass yields used to determine the SOA formation potential of vehicular emissions are substantially higher than those derived from laboratory chamber studies. Additional laboratory chamber studies confirm that, owing to vapor-phase wall loss, the SOA mass yields currently used in virtually all 3D chemical transport models are biased low by as much as a factor of 4. Furthermore, predictions from the Statistical Oxidation Model suggest that this bias could be as high as a factor of 8 if the influence of the chamber walls could be removed entirely.
Once vapor-phase wall loss has been accounted for in a new suite of laboratory chamber experiments, the SOA parameterizations within atmospheric chemical transport models should also be updated. To address the numerical challenges of implementing the next generation of SOA models in atmospheric chemical transport models, a novel mathematical framework, termed the Moment Method, is designed and presented. Assessment of the Moment Method strengths and weaknesses provide valuable insight that can guide future development of SOA modules for atmospheric CTMs.
Finally, regional inorganic aerosol formation and evolution is investigated via detailed comparison of predictions from the Community Multiscale Air Quality (CMAQ version 4.7.1) model against a suite of airborne and ground-based meteorological measurements, gas- and aerosol-phase inorganic measurements, and black carbon (BC) measurements over Southern California during the CalNex field campaign in May/June 2010. Results suggests that continuing to target sulfur emissions with the hopes of reducing ambient PM concentrations may not the most effective strategy for Southern California. Instead, targeting dairy emissions is likely to be an effective strategy for substantially reducing ammonium nitrate concentrations in the eastern part of the Los Angeles Basin.
Resumo:
For some time now, the Latino voice has been gradually gaining strength in American politics, particularly in such states as California, Florida, Illinois, New York, and Texas, where large numbers of Latino immigrants have settled and large numbers of electoral votes are at stake. Yet the issues public officials in these states espouse and the laws they enact often do not coincide with the interests and preferences of Latinos. The fact that Latinos in California and elsewhere have not been able to influence the political agenda in a way that is commensurate with their numbers may reflect their failure to participate fully in the political process by first registering to vote and then consistently turning out on election day to cast their ballots.
To understand Latino voting behavior, I first examine Latino political participation in California during the ten general elections of the 1980s and 1990s, seeking to understand what percentage of the eligible Latino population registers to vote, with what political party they register, how many registered Latinos to go the polls on election day, and what factors might increase their participation in politics. To ensure that my findings are not unique to California, I also consider Latino voter registration and turnout in Texas for the five general elections of the 1990s and compare these results with my California findings.
I offer a new approach to studying Latino political participation in which I rely on county-level aggregate data, rather than on individual survey data, and employ the ecological inference method of generalized bounds. I calculate and compare Latino and white voting-age populations, registration rates, turnout rates, and party affiliation rates for California's fifty-eight counties. Then, in a secondary grouped logit analysis, I consider the factors that influence these Latino and white registration, turnout, and party affiliation rates.
I find that California Latinos register and turn out at substantially lower rates than do whites and that these rates are more volatile than those of whites. I find that Latino registration is motivated predominantly by age and education, with older and more educated Latinos being more likely to register. Motor voter legislation, which was passed to ease and simplify the registration process, has not encouraged Latino registration . I find that turnout among California's Latino voters is influenced primarily by issues, income, educational attainment, and the size of the Spanish-speaking communities in which they reside. Although language skills may be an obstacle to political participation for an individual, the number of Spanish-speaking households in a community does not encourage or discourage registration but may encourage turnout, suggesting that cultural and linguistic assimilation may not be the entire answer.
With regard to party identification, I find that Democrats can expect a steady Latino political identification rate between 50 and 60 percent, while Republicans attract 20 to 30 percent of Latino registrants. I find that education and income are the dominant factors in determining Latino political party identification, which appears to be no more volatile than that of the larger electorate.
Next, when I consider registration and turnout in Texas, I find that Latino registration rates are nearly equal to those of whites but that Texas Latino turnout rates are volatile and substantially lower than those of whites.
Low turnout rates among Latinos and the volatility of these rates may explain why Latinos in California and Texas have had little influence on the political agenda even though their numbers are large and increasing. Simply put, the voices of Latinos are little heard in the halls of government because they do not turn out consistently to cast their votes on election day.
While these findings suggest that there may not be any short-term or quick fixes to Latino participation, they also suggest that Latinos should be encouraged to participate more fully in the political process and that additional education may be one means of achieving this goal. Candidates should speak more directly to the issues that concern Latinos. Political parties should view Latinos as crossover voters rather than as potential converts. In other words, if Latinos were "a sleeping giant," they may now be a still-drowsy leviathan waiting to be wooed by either party's persuasive political messages and relevant issues.
Resumo:
An area of about 25 square miles in the western part of the San Gabriel Mountains was mapped on a scale of 1000 feet to the inch. Special attention was given to the structural geology, particularly the relations between the different systems of faults, of which the San Gabriel fault system and the Sierra Madre fault system are the most important ones. The present distribution and relations of the rocks suggests that the southern block has tilted northward against a more stable mass of old rocks which was raised up during a Pliocene or post-Pliocene orogeny. It is suggested that this northward tilting of the block resulted in the group of thrust faults which comprise the Sierra Madre fault system. It is show that this hypothesis fits the present distribution of the rocks and occupies a logical place in the geologic history of the region as well or better than any other hypothesis previously offered to explain the geology of the region.
Resumo:
This work seeks to understand past and present surface conditions on the Moon using two different but complementary approaches: topographic analysis using high-resolution elevation data from recent spacecraft missions and forward modeling of the dominant agent of lunar surface modification, impact cratering. The first investigation focuses on global surface roughness of the Moon, using a variety of statistical parameters to explore slopes at different scales and their relation to competing geological processes. We find that highlands topography behaves as a nearly self-similar fractal system on scales of order 100 meters, and there is a distinct change in this behavior above and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lunar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the Moon. In particular, we find that differential slope, a statistical measure of roughness related to the curvature of a topographic profile, is extremely useful in distinguishing between geologic units. Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of characteristic shape geometrically, allowing for tracking of both the topography and surviving rim fragments over time. The power spectral density of cratered terrains is estimated numerically from model results and benchmarked against a 1-dimensional analytic model. The power spectral slope is observed to vary predictably with the size-frequency distribution of craters, as well as the crater shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze the evolving size-frequency distribution of craters under different criteria for identifying "visible" craters from surviving rim fragments. A geometric bias exists that systematically over counts large or small craters, depending on the rim fraction required to count a given feature as either visible or erased.
Resumo:
I. Foehn winds of southern California.
An investigation of the hot, dry and dust laden winds
occurring in the late fall and early winter in the Los Angeles
Basin and attributed in the past to the influences of the desert
regions to the north revealed that these currents were of a
foehn nature. Their properties were found to be entirely due
to dynamical heating produced in the descent from the high level
areas in the interior to the lower Los Angeles Basin. Any dust
associated with the phenomenon was found to be acquired from the
Los Angeles area rather than transported from the desert. It was
found that the frequency of occurrence of a mild type foehn of this
nature during this season was sufficient to warrant its classification
as a winter monsoon. This results from the topography of
the Los Angeles region which allows an easy entrance to the air
from the interior by virtue of the low level mountain passes north
of the area. This monsoon provides the mild winter climate of
southern California since temperatures associated with the foehn
currents are far higher than those experienced when maritime air
from the adjacent Pacific Ocean occupies the region.
II. Foehn wind cyclo-genesis.
Intense anticyclones frequently build up over the high level
regions of the Great Basin and Columbia Plateau which lie between
the Sierra Nevada and Cascade Mountains to the west and the Rocky
Mountains to the east. The outflow from these anticyclones produce
extensive foehns east of the Rockies in the comparatively low
level areas of the middle west and the Canadian provinces of
Alberta and Saskatchewan. Normally at this season of the year very
cold polar continental air masses are present over this territory
and with the occurrence of these foehns marked discontinuity surfaces
arise between the warm foehn current, which is obliged to slide over
a colder mass, and the Pc air to the east. Cyclones are
easily produced from this phenomenon and take the form of unstable
waves which propagate along the discontinuity surface between the
two dissimilar masses. A continual series of such cyclones was
found to occur as long as the Great Basin anticyclone is maintained
with undiminished intensity.
III. Weather conditions associated with the Akron disaster.
This situation illustrates the speedy development and
propagation of young disturbances in the eastern United States
during the spring of the year under the influence of the conditionally
unstable tropical maritime air masses which characterise the
region. It also furnishes an excellent example of the superiority
of air mass and frontal methods of weather prediction for aircraft
operation over the older methods based upon pressure distribution.
IV. The Los Angeles storm of December 30, 1933 to January 1, 1934.
This discussion points out some of the fundamental interactions
occurring between air masses of the North Pacific Ocean in connection
with Pacific Coast storms and the value of topographic and
aerological considerations in predicting them. Estimates of rainfall
intensity and duration from analyses of this type may be made and
would prove very valuable in the Los Angeles area in connection with
flood control problems.
Resumo:
Part 1 of this thesis is about the 24 November, 1987, Superstition Hills earthquakes. The Superstition Hills earthquakes occurred in the western Imperial Valley in southern California. The earthquakes took place on a conjugate fault system consisting of the northwest-striking right-lateral Superstition Hills fault and a previously unknown Elmore Ranch fault, a northeast-striking left-lateral structure defined by surface rupture and a lineation of hypocenters. The earthquake sequence consisted of foreshocks, the M_s 6.2 first main shock, and aftershocks on the Elmore Ranch fault followed by the M_s 6.6 second main shock and aftershocks on the Superstition Hills fault. There was dramatic surface rupture along the Superstition Hills fault in three segments: the northern segment, the southern segment, and the Wienert fault.
In Chapter 2, M_L≥4.0 earthquakes from 1945 to 1971 that have Caltech catalog locations near the 1987 sequence are relocated. It is found that none of the relocated earthquakes occur on the southern segment of the Superstition Hills fault and many occur at the intersection of the Superstition Hills and Elmore Ranch faults. Also, some other northeast-striking faults may have been active during that time.
Chapter 3 discusses the Superstition Hills earthquake sequence using data from the Caltech-U.S.G.S. southern California seismic array. The earthquakes are relocated and their distribution correlated to the type and arrangement of the basement rocks. The larger earthquakes occur only where continental crystalline basement rocks are present. The northern segment of the Superstition Hills fault has more aftershocks than the southern segment.
An inversion of long period teleseismic data of the second mainshock of the 1987 sequence, along the Superstition Hills fault, is done in Chapter 4. Most of the long period seismic energy seen teleseismically is radiated from the southern segment of the Superstition Hills fault. The fault dip is near vertical along the northern segment of the fault and steeply southwest dipping along the southern segment of the fault.
Chapter 5 is a field study of slip and afterslip measurements made along the Superstition Hills fault following the second mainshock. Slip and afterslip measurements were started only two hours after the earthquake. In some locations, afterslip more than doubled the coseismic slip. The northern and southern segments of the Superstition Hills fault differ in the proportion of coseismic and postseismic slip to the total slip.
The northern segment of the Superstition Hills fault had more aftershocks, more historic earthquakes, released less teleseismic energy, and had a smaller proportion of afterslip to total slip than the southern segment. The boundary between the two segments lies at a step in the basement that separates a deeper metasedimentary basement to the south from a shallower crystalline basement to the north.
Part 2 of the thesis deals with the three-dimensional velocity structure of southern California. In Chapter 7, an a priori three-dimensional crustal velocity model is constructed by partitioning southern California into geologic provinces, with each province having a consistent one-dimensional velocity structure. The one-dimensional velocity structures of each region were then assembled into a three-dimensional model. The three-dimension model was calibrated by forward modeling of explosion travel times.
In Chapter 8, the three-dimensional velocity model is used to locate earthquakes. For about 1000 earthquakes relocated in the Los Angeles basin, the three-dimensional model has a variance of the the travel time residuals 47 per cent less than the catalog locations found using a standard one-dimensional velocity model. Other than the 1987 Whittier earthquake sequence, little correspondence is seen between these earthquake locations and elements of a recent structural cross section of the Los Angeles basin. The Whittier sequence involved rupture of a north dipping thrust fault bounded on at least one side by a strike-slip fault. The 1988 Pasadena earthquake was deep left-lateral event on the Raymond fault. The 1989 Montebello earthquake was a thrust event on a structure similar to that on which the Whittier earthquake occurred. The 1989 Malibu earthquake was a thrust or oblique slip event adjacent to the 1979 Malibu earthquake.
At least two of the largest recent thrust earthquakes (San Fernando and Whittier) in the Los Angeles basin have had the extent of their thrust plane ruptures limited by strike-slip faults. This suggests that the buried thrust faults underlying the Los Angeles basin are segmented by strike-slip faults.
Earthquake and explosion travel times are inverted for the three-dimensional velocity structure of southern California in Chapter 9. The inversion reduced the variance of the travel time residuals by 47 per cent compared to the starting model, a reparameterized version of the forward model of Chapter 7. The Los Angeles basin is well resolved, with seismically slow sediments atop a crust of granitic velocities. Moho depth is between 26 and 32 km.
Resumo:
The long- and short-period body waves of a number of moderate earthquakes occurring in central and southern California recorded at regional (200-1400 km) and teleseismic (> 30°) distances are modeled to obtain the source parameters-focal mechanism, depth, seismic moment, and source time history. The modeling is done in the time domain using a forward modeling technique based on ray summation. A simple layer over a half space velocity model is used with additional layers being added if necessary-for example, in a basin with a low velocity lid.
The earthquakes studied fall into two geographic regions: 1) the western Transverse Ranges, and 2) the western Imperial Valley. Earthquakes in the western Transverse Ranges include the 1987 Whittier Narrows earthquake, several offshore earthquakes that occurred between 1969 and 1981, and aftershocks to the 1983 Coalinga earthquake (these actually occurred north of the Transverse Ranges but share many characteristics with those that occurred there). These earthquakes are predominantly thrust faulting events with the average strike being east-west, but with many variations. Of the six earthquakes which had sufficient short-period data to accurately determine the source time history, five were complex events. That is, they could not be modeled as a simple point source, but consisted of two or more subevents. The subevents of the Whittier Narrows earthquake had different focal mechanisms. In the other cases, the subevents appear to be the same, but small variations could not be ruled out.
The recent Imperial Valley earthquakes modeled include the two 1987 Superstition Hills earthquakes and the 1969 Coyote Mountain earthquake. All are strike-slip events, and the second 1987 earthquake is a complex event With non-identical subevents.
In all the earthquakes studied, and particularly the thrust events, constraining the source parameters required modeling several phases and distance ranges. Teleseismic P waves could provide only approximate solutions. P_(nl) waves were probably the most useful phase in determining the focal mechanism, with additional constraints supplied by the SH waves when available. Contamination of the SH waves by shear-coupled PL waves was a frequent problem. Short-period data were needed to obtain the source time function.
In addition to the earthquakes mentioned above, several historic earthquakes were also studied. Earthquakes that occurred before the existence of dense local and worldwide networks are difficult to model due to the sparse data set. It has been noticed that earthquakes that occur near each other often produce similar waveforms implying similar source parameters. By comparing recent well studied earthquakes to historic earthquakes in the same region, better constraints can be placed on the source parameters of the historic events.
The Lompoc earthquake (M=7) of 1927 is the largest offshore earthquake to occur in California this century. By direct comparison of waveforms and amplitudes with the Coalinga and Santa Lucia Banks earthquakes, the focal mechanism (thrust faulting on a northwest striking fault) and long-period seismic moment (10^(26) dyne cm) can be obtained. The S-P travel times are consistent with an offshore location, rather than one in the Hosgri fault zone.
Historic earthquakes in the western Imperial Valley were also studied. These events include the 1942 and 1954 earthquakes. The earthquakes were relocated by comparing S-P and R-S times to recent earthquakes. It was found that only minor changes in the epicenters were required but that the Coyote Mountain earthquake may have been more severely mislocated. The waveforms as expected indicated that all the events were strike-slip. Moment estimates were obtained by comparing the amplitudes of recent and historic events at stations which recorded both. The 1942 event was smaller than the 1968 Borrego Mountain earthquake although some previous studies suggested the reverse. The 1954 and 1937 earthquakes had moments close to the expected value. An aftershock of the 1942 earthquake appears to be larger than previously thought.
Resumo:
In work of this nature it is advisable to state definitely the problem attempted in order that the reader may have a clear understanding of the object of the work undertaken. The problem involved is to determine the efficiency and inefficiency in the operation of the Bureau of Power and Light of Los Angeles, California, as it exists at the present time. This will be more on the order of a government investigation than a purely engineering thesis. An engineering thesis consists or reports based on experiments and tests, etc., while the present undertaking will consist of investigation of the facts concerning the organization, operation and conduct of the business of the Bureau of Power and Light. The facts presented were obtained from several sources: (1) the writer's knowledge of the business; (2) books written on municipal ownership; (3) reports published by the Bureau, and (4) personal interviews with men connected with the organization. I have endeavored to draw conclusions from the facts thus obtained, as to the present status of the Bureau of Power and Light.
Resumo:
The problem of the Atchison, Topeka, and Santa Fe railroad in Pasadena is a very dynamic one, as is readily recognized by engineers, city officials, and laymen. The route of the railroad was first laid out in the eighties and because of certain liberal concessions granted by the City of Pasadena, the right-of-way was located through Pasadena, despite the fact that the grade coming into the city either from Los Angeles or San Bernardino was enormous. Some years later, other transcontinental routes of the Santa Fe out of Los Angles were sought, and a right-of-way was obtained by way of Fullerton and Riverside to San Bernardino, where this route joins the one from Los Angeles through Pasadena. This route, however, is ten miles longer than the one through Pasadena, which means a considerable loss of time in a short diversion of approximately only sixty miles in length.