3 resultados para Mindfulness based stress reduction
em CaltechTHESIS
Resumo:
Granular crystals are compact periodic assemblies of elastic particles in Hertzian contact whose dynamic response can be tuned from strongly nonlinear to linear by the addition of a static precompression force. This unique feature allows for a wide range of studies that include the investigation of new fundamental nonlinear phenomena in discrete systems such as solitary waves, shock waves, discrete breathers and other defect modes. In the absence of precompression, a particularly interesting property of these systems is their ability to support the formation and propagation of spatially localized soliton-like waves with highly tunable properties. The wealth of parameters one can modify (particle size, geometry and material properties, periodicity of the crystal, presence of a static force, type of excitation, etc.) makes them ideal candidates for the design of new materials for practical applications. This thesis describes several ways to optimally control and tailor the propagation of stress waves in granular crystals through the use of heterogeneities (interstitial defect particles and material heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed two-dimensional granular crystals with interstitial spherical intruders and composite hexagonal packings and study their dynamic response using a combination of experimental, numerical and analytical techniques. We first investigate the interaction of defect particles with a solitary wave and utilize this fundamental knowledge in the optimal design of novel composite wave guides, shock or vibration absorbers obtained using gradient-based optimization methods.
Resumo:
Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.
For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.
For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.
For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.
Resumo:
The central theme of this thesis is the use of imidazolium-based organic structure directing agents (OSDAs) in microporous materials synthesis. Imidazoliums are advantageous OSDAs as they are relatively inexpensive and simple to prepare, show robust stability under microporous material synthesis conditions, have led to a wide range of products, and have many permutations in structure that can be explored. The work I present involves the use of mono-, di-, and triquaternary imidazolium-based OSDAs in a wide variety of microporous material syntheses. Much of this work was motivated by successful computational predictions (Chapter 2) that led me to continue to explore these types of OSDAs. Some of the important discoveries with these OSDAs include the following: 1) Experimental evaluation and confirmation of a computational method that predicted a new OSDA for pure-silica STW, a desired framework containing helical pores that was previously very difficult to synthesize. 2) Discovery of a number of new imidazolium OSDAs to synthesize zeolite RTH, a zeolite desired for both the methanol-to-olefins reaction as well as NOX reduction in exhaust gases. This discovery enables the use of RTH for many additional investigations as the previous OSDA used to make this framework was difficult to synthesize, such that no large scale preparations would be practical. 3) The synthesis of pure-silica RTH by topotactic condensation from a layered precursor (denoted CIT-10), that can also be pillared to make a new framework material with an expanded pore system, denoted CIT-11, that can be calcined to form a new microporous material, denoted CIT-12. CIT-10 is also interesting since it is the first layered material to contain 8 membered rings through the layers, making it potentially useful in separations if delamination methods can be developed. 4) The synthesis of a new microporous material, denoted CIT-7 (framework code CSV) that contains a 2-dimensional system of 8 and 10 membered rings with a large cage at channel intersections. This material is especially important since it can be synthesized as a pure-silica framework under low-water, fluoride-mediated synthesis conditions, and as an aluminosilicate material under hydroxide mediated conditions. 5) The synthesis of high-silica heulandite (HEU) by topotactic condensation as well as direct synthesis, demonstrating new, more hydrothermally stable compositions of a previously known framework. 6) The synthesis of germanosilicate and aluminophosphate LTA using a triquaternary OSDA. All of these materials show the diverse range of products that can be formed from OSDAs that can be prepared by straightforward syntheses and have made many of these materials accessible for the first time under facile zeolite synthesis conditions.