1 resultado para Metastasis-inducing Protein

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A long-standing yet to be accomplished task in understanding behavior is to dissect the function of each gene involved in the development and function of a neuron. The C. elegans ALA neuron was chosen in this study for its known function in sleep, an ancient but less understood animal behavior. Single-cell transcriptome profiling identified 8,133 protein-coding genes in the ALA neuron, of which 57 are neuropeptide-coding genes. The most enriched genes are also neuropeptides. In combination with gain-of-function and loss-of-function assays, here I showed that the ALA-enriched FMRFamide neuropeptides, FLP-7, FLP-13, and FLP-24, are sufficient and necessary for inducing C. elegans sleep. These neuropeptides act as neuromodulators through GPCRs, NPR-7, and NPR-22. Further investigation in zebrafish indicates that FMRFamide neuropeptides are sleep-promoting molecules in animals. To correlate the behavioral outputs with genomic context, I constructed a gene regulatory network of the relevant genes controlling C. elegans sleep behavior through EGFR signaling in the ALA neuron. First, I identified an ALA cell-specific motif to conduct a genome-wide search for possible ALA-expressed genes. I then filtered out non ALA-expressed genes by comparing the motif-search genes with ALA transcriptomes from single-cell profiling. In corroborating with ChIP-seq data from modENCODE, I sorted out direct interaction of ALA-expressed transcription factors and differentiation genes in the EGFR sleep regulation pathway. This approach provides a network reference for the molecular regulation of C. elegans sleep behavior, and serves as an entry point for the understanding of functional genomics in animal behaviors.