2 resultados para Merits and Defects of Technology
em CaltechTHESIS
Resumo:
Granular crystals are compact periodic assemblies of elastic particles in Hertzian contact whose dynamic response can be tuned from strongly nonlinear to linear by the addition of a static precompression force. This unique feature allows for a wide range of studies that include the investigation of new fundamental nonlinear phenomena in discrete systems such as solitary waves, shock waves, discrete breathers and other defect modes. In the absence of precompression, a particularly interesting property of these systems is their ability to support the formation and propagation of spatially localized soliton-like waves with highly tunable properties. The wealth of parameters one can modify (particle size, geometry and material properties, periodicity of the crystal, presence of a static force, type of excitation, etc.) makes them ideal candidates for the design of new materials for practical applications. This thesis describes several ways to optimally control and tailor the propagation of stress waves in granular crystals through the use of heterogeneities (interstitial defect particles and material heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed two-dimensional granular crystals with interstitial spherical intruders and composite hexagonal packings and study their dynamic response using a combination of experimental, numerical and analytical techniques. We first investigate the interaction of defect particles with a solitary wave and utilize this fundamental knowledge in the optimal design of novel composite wave guides, shock or vibration absorbers obtained using gradient-based optimization methods.
Resumo:
The process of prophage integration by phage λ and the function and structure of the chromosomal elements required for λ integration have been studied with the use of λ deletion mutants. Since attφ, the substrate of the integration enzymes, is not essential for λ growth, and since attφ resides in a portion of the λ chromosome which is not necessary for vegetative growth, viable λ deletion mutants were isolated and examined to dissect the structure of attφ.
Deletion mutants were selected from wild type populations by treating the phage under conditions where phage are inactivated at a rate dependent on the DNA content of the particles. A number of deletion mutants were obtained in this way, and many of these mutants proved to have defects in integration. These defects were defined by analyzing the properties of Int-promoted recombination in these att mutants.
The types of mutants found and their properties indicated that attφ has three components: a cross-over point which is bordered on either side by recognition elements whose sequence is specifically required for normal integration. The interactions of the recognition elements in Int-promoted recombination between att mutants was examined and proved to be quite complex. In general, however, it appears that the λ integration system can function with a diverse array of mutant att sites.
The structure of attφ was examined by comparing the genetic properties of various att mutants with their location in the λ chromosome. To map these mutants, the techniques of heteroduplex DNA formation and electron microscopy were employed. It was found that integration cross-overs occur at only one point in attφ and that the recognition sequences that direct the integration enzymes to their site of action are quite small, less than 2000 nucleotides each. Furthermore, no base pair homology was detected between attφ and its bacterial analog, attB. This result clearly demonstrates that λ integration can occur between chromosomes which have little, if any, homology. In this respect, λ integration is unique as a system of recombination since most forms of generalized recombination require extensive base pair homology.
An additional study on the genetic and physical distances in the left arm of the λ genome was described. Here, a large number of conditional lethal nonsense mutants were isolated and mapped, and a genetic map of the entire left arm, comprising a total of 18 genes, was constructed. Four of these genes were discovered in this study. A series of λdg transducing phages was mapped by heteroduplex electron microscopy and the relationship between physical and genetic distances in the left arm was determined. The results indicate that recombination frequency in the left arm is an accurate reflection of physical distances, and moreover, there do not appear to be any undiscovered genes in this segment of the genome.