2 resultados para Male Urogenital Diseases

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cells of the specialized mating structures of the nematode Caenorhabditis elegans adult male tail develop from sex-specific divisions of postembryonic blast cells. One male-specific blast cell, B, is the precursor to all the cells of the copulatory spicules. Both cell interactions and autonomous fate specification mechanisms are utilized in the B lineage to specify fate.

During development the anterior daughter of B, B.a, generates four distinct pairs of cells. Cell ablation experiments indicate that the cells of each pair respond to positional cues provided by other male-specific blast cells. F and U promote anterior fates, Y.p promotes some posterior fates, and the B.a progeny promote posterior fates. The cells within each pair may also interact.

The lin-3/let-23 signalling pathway, identified for its function in C. elegans hermaphrodite vulval induction, mediates the signal from F and U. Reduction-of-function mutations in lin-3 (EGF-like signal), let-23 (receptor), sem-5 (adaptor), let-60 (ras), or lin-45 (raf) disrupt the fates of the anterior cells, and mimic F and U ablation. In addition, ectopically expressed lin-3 disrupts the fates of the posterior cells, and can promote anterior fates even in the absence of F and U.

A genetic screen of over 9000 mutagenized gametes recovered 22 mutations in 20 loci that disrupt fate specification in male tail lineages. Seven of these mutations may represent new genes that play a role in male tail development.

The first division of the B cell is asymmetric. The gene vab-3 is required for specification of B.a fates, and it may represent a factor whose activity is localized to the B.a cell via the gene lin-17. lin-17 acts both at the first division of the B cell and at specific other cell divisions in the lineage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better understand human diseases, much recent work has focused on proteins to either identify disease targets through proteomics or produce therapeutics via protein engineering. Noncanonical amino acids (ncAAs) are tools for altering the chemical and physical properties of proteins, providing a facile strategy not only to label proteins but also to engineer proteins with novel properties. My thesis research has focused on the development and applications of noncanonical amino acids in identifying, imaging, and engineering proteins for studying human diseases. Chapter 1 introduces the concept of ncAAs and reveals insights to how I chose my thesis projects.

ncAAs have been incorporated to tag and enrich newly synthesized proteins for mass spectrometry through a method termed BONCAT, or bioorthogonal noncanonical amino acid tagging. Chapter 2 describes the investigation of the proteomic response of human breast cancer cells to induced expression of tumor suppressor microRNA miR-126 by combining BONCAT with another proteomic method, SILAC or stable isotope labeling by amino acids in cell culture. This proteomic analysis led to the discovery of a direct target of miR-126, shedding new light on its role in suppressing cancer metastasis.

In addition to mass spectrometry, ncAAs can also be utilized to fluorescently label proteins. Chapter 3 details the synthesis of a set of cell-permeant cyclooctyne probes and demonstration of selective labeling of newly synthesized proteins in live mammalian cells using azidohomoalanine. Similar to live cell imaging, the ability to selectively label a particular cell type within a mixed cell population is important to interrogating many biological systems, such as tumor microenvironments. By taking advantage of the metabolic differences between cancer and normal cells, Chapter 5 discusses efforts to develop selective labeling of cancer cells using a glutamine analogue.

Furthermore, Chapter 4 describes the first demonstration of global replacement at polar amino acid positions and its application in developing an alternative PEGylation strategy for therapeutic proteins. Polar amino acids typically occupy solvent-exposed positions on the protein surface, and incorporation of noncanonical amino acids at these positions should allow easier modification and cause less perturbation compared to replacements at the interior positions of proteins.