3 resultados para Maison Constant Van Thorenburg-Mestdagh (Gand, France)

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first experimental evidence that the heat capacity of superfluid 4He, at temperatures very close to the lambda transition temperature, Tλ,is enhanced by a constant heat flux, Q. The heat capacity at constant Q, CQ,is predicted to diverge at a temperature Tc(Q) < Tλ at which superflow becomes unstable. In agreement with previous measurements, we find that dissipation enters our cell at a temperature, TDAS(Q),below the theoretical value, Tc(Q). Our measurements of CQ were taken using the discrete pulse method at fourteen different heat flux values in the range 1µW/cm2 ≤ Q≤ 4µW /cm2. The excess heat capacity ∆CQ we measure has the predicted scaling behavior as a function of T and Q:∆CQ • tα ∝ (Q/Qc)2, where QcT) ~ t is the critical heat current that results from the inversion of the equation for Tc(Q). We find that if the theoretical value of Tc( Q) is correct, then ∆CQ is considerably larger than anticipated. On the other hand,if Tc(Q)≈ TDAS(Q),then ∆CQ is the same magnitude as the theoretically predicted enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dilution refrigerator has been constructed capable of producing steady state temperatures less than .075°K. The first part of this work is concerned with the design and construction of this machine. Enough theory is presented to allow one to understand the operation and critical design factors of a dilution refrigerator. The performance of our refrigerator is compared with the operating characteristics of three other dilution refrigerators appearing in the present literature.

The dilution refrigerator constructed was used to measure the nuclear contribution to the low temperature specific heat of a pure, single-crystalline sample of rhenium metal. Measurements were made in magnetic fields from 0 to 12.5 kOe for the temperature range .13°K - .52°K. The second part of this work discusses the results of these experiments. The expected nuclear contribution is not found when the sample is in the superconducting state. This is believed to be due to the long spin-lattice relaxation times in superconductors. In the normal state, for the temperature range studied, the nuclear contribution is given by A/T2 where A = .061 ± .002 millijoules-K/mole. The value of A is found to increase to A = .077 ± .004 millijoules-K/mole when the sample is located in a magnetic field of 12.5 kOe.

From the measured value of A the splitting of the energy levels of the nuclear spin system due to the interaction of the internal crystalline electric field gradients with the nuclear quadrupole moments is calculated. A comparison is made between the predicted and measured magnetic dependence of the specific heat. Finally, predictions are made of future nuclear magnetic resonance experiments which may be performed to check the results obtained by calorimetery here and further, to investigate existing theories concerning the sources of electric field gradients in metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.

Part II

The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.