13 resultados para Magnetic interactions

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The superconducting and magnetic properties of splat cooled amorphous alloys of composition (La100-xGdx)80Au20 (0 ≤ x ≤ 100) have been studied. The La80Au20 alloys are ideal type II super-conductors (critical temperature Tc = 3.5° K ). The concentration range (x less than 1) where superconductivity and spin-glass freezing n1ight coexist has been studied in detail. The spin-glass alloys (0 less than x less than 70) exhibit susceptibility maxima and thermomagnetic history effects. In the absence of complications due to crystal field and enhanced matrix effects, a phenomenological model is proposed in which the magnetic clusters are treated as single spin entities interacting via random forces using the molecular field approach. The fundamental parameters (such as the strength of the forces and the size of clusters) can be deduced from magnetization measurements. The remanent magnetization is shown to arise from an interplay of the RKKY and dipolar forces. Magnetoresistivity results are found to be consistent with the aforementioned picture. The nature of magnetic interactions in an amorphous matrix is also discussed. The moment per Gd atom (7µB) is found to be constant and close to that of the crystalline value throughout the concentration range investigated. Finally, a detail study is made of the critical phenomena and magnetic properties of the amorphous ferromagnet: Gd80Au20. The results are compared with recent theories on amorphous magnetism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nature of the intra- and intermolecular base-stacking interactions involving several dinucleoside monophosphates in aqueous solution have been investigated by proton magnetic resonance spectrosocopy, and this method has been applied to a study of the interaction of polyuridylic acid with purine and adenosine monomers.

The pmr spectra of adenylyl (3' → 5') cytidine (ApC) and cytidylyl (3' → 5') adenosine (CpA) have been studied as a function of concentration and temperature. The results of these studies indicate that the intramolecular base-stacking interactions between the adenine and cytosine bases of these dinucleoside monophosphates are rather strong, and that the stacking tendencies are comparable for the two sequence isomers. The chemical shifts of the cytosine H5 and adenine H2 protons, and their variations with temperature, were shown to be consistent with stacked conformations in which both bases of the dinucleoside monophosphates are preferentially oriented in the anti conformation as in similar dApdC, and dCpdA (dA = deoxyadenosine; dC = deoxycytidine) segments in double helical DNA. The intramolecular stacking interaction was found to have a pronounced effect on the conformations of the ribose moieties, and these conformational changes are discussed. The concentration studies indicate extensive self-association of these dinucleoside monophosphates, and analysis of the concentration data facilitated determination of the dimerization constant for the association process as well as the nature of the intermolecular complexes.

The dependence of the ribose conformation upon the extent of intramolecular base-stacking was used to demonstrate that the base-base interaction in cytidylyl (3' → 5') cytidine (CpC) is rather strong, while there appears to be little interaction between the two uracil bases of uridylyl (3' → 5') uridine (UpU).

Studies of the binding of purine to several ribose and deoxyribose dinucleoside monophosphates show that the mode of interaction is base-stacking, and evidence for the formation of a purine-dinucleoside monophosphate intercalated complex is presented. The purine proton resonances are markedly broadened in this complex, and estimates of the purine linewidths in the complex and the equilibrium constant for purine intercalation are obtained.

A study of the interaction of unsubstitued purine with polyuridylic acid at 29°C by pmr indicated that purine binds to the uracil bases of the polymer by base-stacking. The severe broadening of the purine proton resonances observed provides strong evidence for the intercalation of purine between adjacent uracil bases of poly U. This interaction does not result in a more rigid or ordered structure for the polymer.

Investigation of the interaction between adenosine and polyuridylic acid revealed two modes of interaction between the monomer and the polymer, depending on the temperature. At temperatures above 26°C or so, monomeric adenosine binds to poly U by noncooperative A-U base stacking. Below this temperature, a rigid triple-stranded 1A:2U complex is formed, presumably via cooperative hydrogen-bonding as has previously been reported.

These results clearly illustrate the importance of base-stacking in non-specific interactions between bases, nucleosides and nucleotides, and also reveal the important role of the base-stacking interactions in cooperatively for med structures involving specific base-pairing where both types of interaction are possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcranial magnetic stimulation (TMS) is a technique that stimulates the brain using a magnetic coil placed on the scalp. Since it is applicable to humans non-invasively, directly interfering with neural electrical activity, it is potentially a good tool to study the direct relationship between perceptual experience and neural activity. However, it has been difficult to produce a clear perceptible phenomenon with TMS of sensory areas, especially using a single magnetic pulse. Also, the biophysical mechanisms of magnetic stimulation of single neurons have been poorly understood.

In the psychophysical part of this thesis, perceptual phenomena induced by TMS of the human visual cortex are demonstrated as results of the interactions with visual inputs. We first introduce a method to create a hole, or a scotoma, in a flashed, large-field visual pattern using single-pulse TMS. Spatial aspects of the interactions are explored using the distortion effect of the scotoma depending on the visual pattern, which can be luminance-defined or illusory. Its similarity to the distortion of afterimages is also discussed. Temporal interactions are demonstrated in the filling-in of the scotoma with temporally adjacent visual features, as well as in the effective suppression of transient visual features. Also, paired-pulse TMS is shown to lead to different brightness modulations in transient and sustained visual stimuli.

In the biophysical part, we first develop a biophysical theory to simulate the effect of magnetic stimulation on arbitrary neuronal structure. Computer simulations are performed on cortical neuron models with realistic structure and channels, combined with the current injection that simulates magnetic stimulation. The simulation results account for general and basic characteristics of the macroscopic effects of TMS including our psychophysical findings, such as a long inhibitory effect, dependence on the background activity, and dependence on the direction of the induced electric field.

The perceptual effects and the cortical neuron model presented here provide foundations for the study of the relationship between perception and neural activity. Further insights would be obtained from extension of our model to neuronal networks and psychophysical studies based on predictions of the biophysical model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundamental studies of magnetic alignment of highly anisotropic mesostructures can enable the clean-room-free fabrication of flexible, array-based solar and electronic devices, in which preferential orientation of nano- or microwire-type objects is desired. In this study, ensembles of 100 micron long Si microwires with ferromagnetic Ni and Co coatings are oriented vertically in the presence of magnetic fields. The degree of vertical alignment and threshold field strength depend on geometric factors, such as microwire length and ferromagnetic coating thickness, as well as interfacial interactions, which are modulated by varying solvent and substrate surface chemistry. Microwire ensembles with vertical alignment over 97% within 10 degrees of normal, as measured by X-ray diffraction, are achieved over square cm scale areas and set into flexible polymer films. A force balance model has been developed as a predictive tool for magnetic alignment, incorporating magnetic torque and empirically derived surface adhesion parameters. As supported by these calculations, microwires are shown to detach from the surface and align vertically in the presence of magnetic fields on the order of 100 gauss. Microwires aligned in this manner are set into a polydimethylsiloxane film where they retain their vertical alignment after the field has been removed and can subsequently be used as a flexible solar absorber layer. Finally, these microwires arrays can be protected for use in electrochemical cells by the conformal deposition of a graphene layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.

The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.

The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.

An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of composition on the structure and on the electric and magnetic properties of amorphous Pd-Mn-P and Pd-Co-P prepared by rapid quenching techniques were investigated in terms of (1) the 3d band filling of the first transition metal group, (2) the phosphorus concentration effect which acts as an electron donor and (3) the transition metal concentration.

The structure is essentially characterized by a set of polyhedra subunits essentially inverse to the packing of hard spheres in real space. Examination of computer generated distribution functions using Monte Carlo random statistical distribution of these polyhedra entities demonstrated tile reproducibility of the experimentally calculated atomic distribution function. As a result, several possible "structural parameters" are proposed such as: the number of nearest neighbors, the metal-to-metal distance, the degree of short-range order and the affinity between metal-metal and metal-metalloid. It is shown that the degree of disorder increases from Ni to Mn. Similar behavior is observed with increase in the phosphorus concentration.

The magnetic properties of Pd-Co-P alloys show that they are ferromagnetic with a Curie temperature between 272 and 399°K as the cobalt concentration increases from 15 to 50 at.%. Below 20 at.% Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range . The electric resistivity measurements were performed from liquid helium temperatures up to the vicinity of the melting point (900°K). The thermomagnetic analysis was carried out under an applied field of 6.0 kOe. The electrical resistivity of Pd-Co-P shows the coexistence of a Kondo-like minimum with ferromagnetism. The minimum becomes less important as the transition metal concentration increases and the coefficients of ℓn T and T^2 become smaller and strongly temperature dependent. The negative magnetoresistivity is a strong indication of the existence of localized moment.

The temperature coefficient of resistivity which is positive for Pd- Fe-P, Pd-Ni-P, and Pd-Co-P becomes negative for Pd-Mn-P. It is possible to account for the negative temperature dependence by the localized spin fluctuation model and the high density of states at the Fermi energy which becomes maximum between Mn and Cr. The magnetization curves for Pd-Mn-P are typical of those resulting from the interplay of different exchange forces. The established relationship between susceptibility and resistivity confirms the localized spin fluctuation model. The magnetoresistivity of Pd-Mn-P could be interpreted in tenns of a short-range magnetic ordering that could arise from the Rudennan-Kittel type interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An automatic experimental apparatus for perturbed angular correlation measurements, capable of incorporating Ge(Li) detectors as well as scintillation counters, has been constructed.

The gamma-gamma perturbed angular correlation technique has been used to measure magnetic dipole moments of several nuclear excited states in the osmium transition region. In addition, the hyperfine magnetic fields, experienced by nuclei of 'impurity' atoms embedded in ferromagnetic host lattices, have been determined for several '4d' and '5d' impurity atoms.

The following magnetic dipole moments were obtained in the osmium transition region μ2+(190Os) = 0.54 ± 0.06 nm μ4+(190Os) = 0.88 ± 0.48 nm μ2+(192Os) = 0.56 ± 0.08 nm μ2+(192Pt) = 0.56 ± 0.06 nm μ2+’(192Pt) = 0.62 ± 0.14 nm.

These results are discussed in terms of three collective nuclear models; the cranking model, the rotation-vibration model and the pairing-plus-quadrupole model. The measurements are found to be in satisfactory agreement with collective descriptions of low lying nuclear states in this region.

The following hyperfine magnetic fields of 'impurities' in ferromagnetic hosts were determined; Hint(Cd Ni) = - (64.0 ± 0.8)kG Hint(Hg Fe) = - (440 ± 105)kG Hint(Hg Co) = - (370 ± 78)kG Hint(Hg Ni) = - (86 ± 22)kG Hint(Tl Fe) = - (185 ± 70)kG Hint(Tl Co) = - (90 ± 35)kG Hint(Ra Fe) = - (105 ± 20)kG Hint(Ra Co) = - (80 ± 16)kG Hint(Ra Ni) = - (30 ± 10)kG, where in Hint(AB); A is the impurity atom embedded in the host lattice B. No quantitative theory is available for comparison. However, these results are found to obey the general systematics displayed by these fields. Several mechanisms which may be responsible for the appearance of these fields are mentioned.

Finally, a theoretical expression for time-differential perturbed angular correlation measurement, which duplicates experimental conditions is developed and its importance in data analysis is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new phenomena have been observed in Mössbauer spectra: a temperature-dependent shift of the center of gravity of the spectrum, and an asymmetric broadening of the spectrum peaks. Both phenomena were observed in thulium salts. In the temperature range 1˚K ≤ T ≤ 5˚K the observed shift has an approximate inverse temperature dependence. We explain this on the basis of a Van Vleck type of interaction between the magnetic moment of two nearly degenerate electronic levels and the magnetic moment of the nucleus. From the size of the shift we are able to deduce an “effective magnetic field” H = (6.0 ± 0.1) x 106 Gauss, which is proportional to ‹r-3M‹G|J|E› where ‹r-3M is an effective magnetic radial integral for the 4f electrons and |G› and |E› are the lowest 4f electronic states in Tm Cl3·6H2O. From the temperature dependence of the shift we have derived a preliminary value of 1 cm-1 for the splitting of these two states. The observed asymmetric line broadening is independent of temperature in the range 1˚K ≤ T ≤ 5˚K, but is dependent on the concentration of thulium ions in the crystal. We explain this broadening on the basis of spin-spin interactions between thulium ions. From size and concentration dependence of the broadening we are able to deduce a spin-spin relaxation time for Tm Cl3·6H2O of the order of 10-11 sec.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mössbauer technique has been used to study the nuclear hyperfine interactions and lifetimes in W182 (2+ state) and W183 (3/2- and 5/2- states) with the following results: g(5/2-)/g(2+) = 1.40 ± 0.04; g(3/2- = -0.07 ± 0.07; Q(5/2-)/Q(2+) = 0.94 ± 0.04; T1/2(3/2-) = 0.184 ± 0.005 nsec; T1/2(5/2-) >̰ 0.7 nsec. These quantities are discussed in terms of a rotation-particle interaction in W183 due to Coriolis coupling. From the measured quantities and additional information on γ-ray transition intensities magnetic single-particle matrix elements are derived. It is inferred from these that the two effective g-factors, resulting from the Nilsson-model calculation of the single-particle matrix elements for the spin operators ŝz and ŝ+, are not equal, consistent with a proposal of Bochnacki and Ogaza.

The internal magnetic fields at the tungsten nucleus were determined for substitutional solid solutions of tungsten in iron, cobalt, and nickel. With g(2+) = 0.24 the results are: |Heff(W-Fe)| = 715 ± 10 kG; |Heff(W-Co)| = 360 ± 10 kG; |Heff(W-Ni)| = 90 ± 25 kG. The electric field gradients at the tungsten nucleus were determined for WS2 and WO3. With Q(2+) = -1.81b the results are: for WS2, eq = -(1.86 ± 0.05) 1018 V/cm2; for WO3, eq = (1.54 ± 0.04) 1018 V/cm2 and ƞ = 0.63 ± 0.02.

The 5/2- state of Pt195 has also been studied with the Mössbauer technique, and the g-factor of this state has been determined to be -0.41 ± 0.03. The following magnetic fields at the Pt nucleus were found: in an Fe lattice, 1.19 ± 0.04 MG; in a Co lattice, 0.86 ± 0.03 MG; and in a Ni lattice, 0.36 ± 0.04 MG. Isomeric shifts have been detected in a number of compounds and alloys and have been interpreted to imply that the mean square radius of the Pt195 nucleus in the first-excited state is smaller than in the ground state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.

The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.

Part II

The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.

Part III

An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I. Proton Magnetic Resonance of Polynucleotides and Transfer RNA.

Proton magnetic resonance was used to follow the temperature dependent intramolecular stacking of the bases in the polynucleotides of adenine and cytosine. Analysis of the results on the basis of a two state stacked-unstacked model yielded values of -4.5 kcal/mole and -9.5 kcal/mole for the enthalpies of stacking in polyadenylic and polycytidylic acid, respectively.

The interaction of purine with these molecules was also studied by pmr. Analysis of these results and the comparison of the thermal unstacking of polynucleotides and short chain nucleotides indicates that the bases contained in stacks within the long chain poly nucleotides are, on the average, closer together than the bases contained in stacks in the short chain nucleotides.

Temperature and purine studies were also carried out with an aqueous solution of formylmethionine transfer ribonucleic acid. Comparison of these results with the results of similar experiments with the homopolynucleotides of adenine, cytosine and uracil indicate that the purine is probably intercalating into loop regions of the molecule.

The solvent denaturation of phenylalanine transfer ribonucleic acid was followed by pmr. In a solvent mixture containing 83 volume per cent dimethylsulf oxide and 17 per cent deuterium oxide, the tRNA molecule is rendered quite flexible. It is possible to resolve resonances of protons on the common bases and on certain modified bases.

Part II. Electron Spin Relaxation Studies of Manganese (II) Complexes in Acetonitrile.

The electron paramagnetic resonance spectra of three Mn+2 complexes, [Mn(CH3CN)6]+2, [MnCl4]-2, and [MnBr4]-2, in acetonitrile were studied in detail. The objective of this study was to relate changes in the effective spin Hamiltonian parameters and the resonance line widths to the structure of these molecular complexes as well as to dynamical processes in solution.

Of the three systems studied, the results obtained from the [Mn(CH3CN)6]+2 system were the most straight-forward to interpret. Resonance broadening attributable to manganese spin-spin dipolar interactions was observed as the manganese concentration was increased.

In the [MnCl4]-2 system, solvent fluctuations and dynamical ion-pairing appear to be significant in determining electron spin relaxation.

In the [MnBr4]-2 system, solvent fluctuations, ion-pairing, and Br- ligand exchange provide the principal means of electron spin relaxation. It was also found that the spin relaxation in this system is dependent upon the field strength and is directly related to the manganese concentration. A relaxation theory based on a two state collisional model was developed to account for the observed behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorine nuclear magnetic resonance techniques have been used to study conformational processes in two proteins labeled specifically in strategic regions with covalently attached fluorinated molecules. In ribonuclease S, the ϵ-amino groups of lysines 1 and 7 were trifluoroacetylated without diminishing enzymatic activity. As inhibitors bound to the enzyme, changes in orientation of the peptide segment containing the trifluoroacetyl groups were detected in the nuclear magnetic resonance spectrum. pH Titration of one of the histidines in the active site produced a reversal of the conformational process.

Hemoglobin was trifluoroacetonylated at the reactive cysteine 93 of each β chain. The nuclear magnetic resonance spectrum of the fluorine moiety reflected changes in the equilibrium position of the β chain carboxy terminus upon binding of heme ligands and allosteric effectors. The chemical shift positions observed in deoxy- and methemoglobin were pH dependent, undergoing an abnormally steep apparent titration which was not observed in hemoglobin from which histidine β 146 had been removed enzymatically. The abnormal sharpness of these pH dependent processes is probably due to interactions between several ionizing groups.

The carbon monoxide binding process was studied by concurrent observation of the visible and nuclear magnetic resonance spectra of trifluoroacetonylated hemoglobin at fractional ligand saturations throughout the range 0-1.0. Comparison of the ligand binding process observed in these two ways yields evidence for a specific order of ligand binding. The sequence of events is sensitive to the pH and organic phosphate concentration of the medium, demonstrating the delicately balanced control system produced by interactions between the hemoglobin subunits and the effectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I. Complexes of Biological Bases and Oligonucleotides with RNA

The physical nature of complexes of several biological bases and oligonucleotides with single-stranded ribonucleic acids have been studied by high resolution proton magnetic resonance spectroscopy. The importance of various forces in the stabilization of these complexes is also discussed.

Previous work has shown that purine forms an intercalated complex with single-stranded nucleic acids. This complex formation led to severe and stereospecific broadening of the purine resonances. From the field dependence of the linewidths, T1 measurements of the purine protons and nuclear Overhauser enhancement experiments, the mechanism for the line broadening was ascertained to be dipole-dipole interactions between the purine protons and the ribose protons of the nucleic acid.

The interactions of ethidium bromide (EB) with several RNA residues have been studied. EB forms vertically stacked aggregates with itself as well as with uridine, 3'-uridine monophosphate and 5'-uridine monophosphate and forms an intercalated complex with uridylyl (3' → 5') uridine and polyuridylic acid (poly U). The geometry of EB in the intercalated complex has also been determined.

The effect of chain length of oligo-A-nucleotides on their mode of interaction with poly U in D20 at neutral pD have also been studied. Below room temperatures, ApA and ApApA form a rigid triple-stranded complex involving a stoichiometry of one adenine to two uracil bases, presumably via specific adenine-uracil base pairing and cooperative base stacking of the adenine bases. While no evidence was obtained for the interaction of ApA with poly U above room temperature, ApApA exhibited complex formation of a 1:1 nature with poly U by forming Watson-Crick base pairs. The thermodynamics of these systems are discussed.

Part II. Template Recognition and the Degeneracy of the Genetic Code

The interaction of ApApG and poly U was studied as a model system for the codon-anticodon interaction of tRNA and mRNA in vivo. ApApG was shown to interact with poly U below ~20°C. The interaction was of a 1:1 nature which exhibited the Hoogsteen bonding scheme. The three bases of ApApG are in an anti conformation and the guanosine base appears to be in the lactim tautomeric form in the complex.

Due to the inadequacies of previous models for the degeneracy of the genetic code in explaining the observed interactions of ApApG with poly U, the "tautomeric doublet" model is proposed as a possible explanation of the degenerate interactions of tRNA with mRNA during protein synthesis in vivo.