4 resultados para Magnesium Chloride

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zirconocene aldehyde and ketone complexes were synthesized in high yield by treatment of zirconocene acyl complexes with trimethylaluminum or diisobutylaluminum hydride. These complexes, which are activated by dialkylaluminum chloride ligands, inserted unsaturated substrates such as alkynes, allenes, ethylene, nitriles, ketenes, aldehydes, ketones, lactones, and acid chlorides with moderate to high conversion. Insertion of aldehyde substrates yielded zirconocene diolate complexes with up to 20:1 (anti:syn) diastereoselectivity. The zirconocene diolates were hydrolyzed to afford unsymmetrical 1,2-diols in 40-80% isolated yield. Unsymmetrical ketones gave similar insertion yields with little or no diastereoselectivity. A high yielding one-pot method was developed that coupled carbonyl substrates with zirconocene aldehyde complexes that were derived from olefins by hydrozirconation and carbonylation. The zirconocene aldehyde complexes also inserted carbon monoxide and gave acyloins in 50% yield after hydrolysis.

The insertion reaction of aryl epoxides with the trimethylphoshine adduct of titanocene methylidene was examined. The resulting oxytitanacyclopentanes were carbonylated and oxidatively cleaved with dioxygen to afford y-lactones in moderate yields. Due to the instability and difficult isolation of titanocene methylidene trimethylphoshine adducts, a one-pot method involving the addition of catalytic amounts of trimethylphosphine to β,β-dimethyltitanacyclobutane was developed. A series of disubstituted aryl epoxides were examined which gave mixtures of diastereomeric insertion products. Based on these results, as well as earlier Hammett studies and labeling experiments, a biradical transition state intermediate is proposed. The method is limited to aryl substituted epoxide substrates with aliphatic examples showing no insertion reactivity.

The third study involved the use of magnesium chloride supported titanium catalysts for the Lewis acid catalyzed silyl group transfer condensation of enol silanes with aldehydes. The reaction resulted in silylated aldol products with as many as 140 catalytic turnovers before catalyst inactivation. Low diastereoselectivities favoring the anti-isomer were consistent with an open transition state involving a titanium atom bound to the catalyst surface. The catalysts were also used for the aldol group transfer polymerization of t-butyldimethylsilyloxy-1-ethene resulting in polymers with molecular weights of 5000-31,000 and molar mass dispersities of 1.5-2.8. Attempts to polymerize methylmethacrylate using GTP proved unsuccessful with these catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part A

A problem restricting the development of the CuCl laser has been the decrease in output power with increases of tube temperature above 400°C. At that temperature the CuCl vapor pressure is about .1 torr. This is a small fraction of the buffer gas pressure (He at 10 torr).

The aim of the project was to measure the peak radiation temperature (assumed related to the mean energy of electrons) in the laser discharge as a function of the tube temperature. A 24 gHz gated microwave radiometer was used.

It was found that at the tube temperatures at which the output power began to deteriorate, the electron radiation temperature showed a sharp increase (compared with radiation temperature in pure buffer).

Using the above result, we have postulated that this sudden increase is a result of Penning ionization of the Cu atoms. As a consequence of this process the number of Cu atoms available for lasing decrease.

PART B

The aim of the project was to study the dissociation of CO2 in the glow discharge of flowing CO2 lasers.

A TM011 microwave (3 gHz) cavity was used to measure the radially averaged electron density ne and the electron-neutral collision frequency in the laser discharge. An estimate of the electric field is made from these two measurements. A gas chromatograph was used to measure the chemical composition of the gases after going through the discharge. This instrument was checked against a mass spectrometer for accuracy and sensitivity.

Several typical laser mixtures were .used: CO2-N2-He (1,3,16), (1,3,0), (1,0,16), (1,2,10), (1,2,0), (1,0,10), (2,3,15), (2,3,0), (2,0,15), (1,3,16)+ H2O and pure CO2. Results show that for the conditions studied the dissociation as a function of the electron density is uniquely determined by the STP partial flow rate of CO2, regardless of the amount of N2 and/or He present. The presence of water vapor in the discharge decreased the degree of dissociation.

A simple theoretical model was developed using thermodynamic equilibrium. The electrons were replaced in the calculations by a distributed heat source.

The results are analyzed with a simple kinetic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study was made of the interaction of phosphate rock and aqueous inorganic orthophosphate, calcium, and hydroxyl ions. A model of the reaction was developed by observing electron diffraction patterns in conjunction with concentration changes of chemical components. The model was applied in explaining the performance of batch suspensions of powdered phosphate rock and packed columns of granular phosphate rock. In both cases the reaction consisted initially of a rapid nucleation phase that occurred in a time period of minutes. In the batch system the calcium phosphate nuclei then ripened into larger micro-crystals of hydroxyapatite, which eventually became indistinguishable from the original phosphate rock surface. During column operation the high supersaturation ratio that existed after the rapid nucleation phase resulted in a layer of small nuclei that covered a slowly growing hydroxyapatite crystal.

The column steady-state rate constant was found to increase with increasing temperature, pH, and fluoride concentration, and to decrease with increasing concentrations of magnesium sulfate, ammonium chloride, and bicarbonate ion.

An engineering feasibility study indicated that, based on economic considerations, nucleation of apatite on phosphate rock ore has a potential use as a wastewater phosphate removal treatment process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their high specific strength and low density, magnesium and magnesium-based alloys have gained great technological importance in recent years. However, their underlying hexagonal crystal structure furnishes Mg and its alloys with a complex mechanical behavior because of their comparably smaller number of energetically favorable slip systems. Besides the commonly studied slip mechanism, another way to accomplish general deformation is through the additional mechanism of deformation-induced twinning. The main aim of this thesis research is to develop an efficient continuum model to understand and ultimately predict the material response resulting from the interaction between these two mechanisms.

The constitutive model we present is based on variational constitutive updates of plastic slips and twin volume fractions and accounts for the related lattice reorientation mechanisms. The model is applied to single- and polycrystalline pure magnesium. We outline the finite-deformation plasticity model combining basal, pyramidal, and prismatic dislocation activity as well as a convexification based approach for deformation twinning. A comparison with experimental data from single-crystal tension-compression experiments validates the model and serves for parameter identification. The extension to polycrystals via both Taylor-type modeling and finite element simulations shows a characteristic stress-strain response that agrees well with experimental observations for polycrystalline magnesium. The presented continuum model does not aim to represent the full details of individual twin-dislocation interactions, yet it is sufficiently efficient to allow for finite element simulations while qualitatively capturing the underlying microstructural deformation mechanisms.