11 resultados para MICRODISK INJECTION-LASER

em CaltechTHESIS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The first part of this work describes the uses of aperiodic structures in optics and integrated optics. In particular, devices are designed, fabricated, tested and analyzed which make use of a chirped grating corrugation on the surface of a dielectric waveguide. These structures can be used as input-output couplers, multiplexers and demultiplexers, and broad band filters.

Next, a theoretical analysis is made of the effects of a random statistical variation in the thicknesses of layers in a dielectric mirror on its reflectivity properties. Unlike the intentional aperiodicity introduced in the chirped gratings, the aperiodicity in the Bragg reflector mirrors is unintentional and is present to some extent in all devices made. The analysis involved in studying these problems relies heavily on the coupled mode formalism. The results are compared with computer experiments, as well as tests of actual mirrors.

The second part of this work describes a novel method for confining light in the transverse direction in an injection laser. These so-called transverse Bragg reflector lasers confine light normal to the junction plane in the active region, through reflection from an adjacent layered medium. Thus, in principle, it is possible to guide light in a dielectric layer whose index is lower than that of the surrounding material. The design, theory and testing of these diode lasers are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconductor technology scaling has enabled drastic growth in the computational capacity of integrated circuits (ICs). This constant growth drives an increasing demand for high bandwidth communication between ICs. Electrical channel bandwidth has not been able to keep up with this demand, making I/O link design more challenging. Interconnects which employ optical channels have negligible frequency dependent loss and provide a potential solution to this I/O bandwidth problem. Apart from the type of channel, efficient high-speed communication also relies on generation and distribution of multi-phase, high-speed, and high-quality clock signals. In the multi-gigahertz frequency range, conventional clocking techniques have encountered several design challenges in terms of power consumption, skew and jitter. Injection-locking is a promising technique to address these design challenges for gigahertz clocking. However, its small locking range has been a major contributor in preventing its ubiquitous acceptance.

In the first part of this dissertation we describe a wideband injection locking scheme in an LC oscillator. Phase locked loop (PLL) and injection locking elements are combined symbiotically to achieve wide locking range while retaining the simplicity of the latter. This method does not require a phase frequency detector or a loop filter to achieve phase lock. A mathematical analysis of the system is presented and the expression for new locking range is derived. A locking range of 13.4 GHz–17.2 GHz (25%) and an average jitter tracking bandwidth of up to 400 MHz are measured in a high-Q LC oscillator. This architecture is used to generate quadrature phases from a single clock without any frequency division. It also provides high frequency jitter filtering while retaining the low frequency correlated jitter essential for forwarded clock receivers.

To improve the locking range of an injection locked ring oscillator; QLL (Quadrature locked loop) is introduced. The inherent dynamics of injection locked quadrature ring oscillator are used to improve its locking range from 5% (7-7.4GHz) to 90% (4-11GHz). The QLL is used to generate accurate clock phases for a four channel optical receiver using a forwarded clock at quarter-rate. The QLL drives an injection locked oscillator (ILO) at each channel without any repeaters for local quadrature clock generation. Each local ILO has deskew capability for phase alignment. The optical-receiver uses the inherent frequency to voltage conversion provided by the QLL to dynamically body bias its devices. A wide locking range of the QLL helps to achieve a reliable data-rate of 16-32Gb/s and adaptive body biasing aids in maintaining an ultra-low power consumption of 153pJ/bit.

From the optical receiver we move on to discussing a non-linear equalization technique for a vertical-cavity surface-emitting laser (VCSEL) based optical transmitter, to enable low-power, high-speed optical transmission. A non-linear time domain optical model of the VCSEL is built and evaluated for accuracy. The modelling shows that, while conventional FIR-based pre-emphasis works well for LTI electrical channels, it is not optimum for the non-linear optical frequency response of the VCSEL. Based on the simulations of the model an optimum equalization methodology is derived. The equalization technique is used to achieve a data-rate of 20Gb/s with power efficiency of 0.77pJ/bit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the design and implementation of a label-free optical biosensing system utilizing a robust on-chip integrated platform. The goal has been to transition optical micro-resonator based label-free biosensing from a laborious and delicate laboratory demonstration to a tool for the analytical life scientist. This has been pursued along four avenues: (1) the design and fabrication of high-$Q$ integrated planar microdisk optical resonators in silicon nitride on silica, (2) the demonstration of a high speed optoelectronic swept frequency laser source, (3) the development and integration of a microfluidic analyte delivery system, and (4) the introduction of a novel differential measurement technique for the reduction of environmental noise.

The optical part of this system combines the results of two major recent developments in the field of optical and laser physics: the high-$Q$ optical resonator and the phase-locked electronically controlled swept-frequency semiconductor laser. The laser operates at a wavelength relevant for aqueous sensing, and replaces expensive and fragile mechanically-tuned laser sources whose frequency sweeps have limited speed, accuracy and reliability. The high-$Q$ optical resonator is part of a monolithic unit with an integrated optical waveguide, and is fabricated using standard semiconductor lithography methods. Monolithic integration makes the system significantly more robust and flexible compared to current, fragile embodiments that rely on the precarious coupling of fragile optical fibers to resonators. The silicon nitride on silica material system allows for future manifestations at shorter wavelengths. The sensor also includes an integrated microfluidic flow cell for precise and low volume delivery of analytes to the resonator surface. We demonstrate the refractive index sensing action of the system as well as the specific and nonspecific adsorption of proteins onto the resonator surface with high sensitivity. Measurement challenges due to environmental noise that hamper system performance are discussed and a differential sensing measurement is proposed, implemented, and demonstrated resulting in the restoration of a high performance sensing measurement.

The instrument developed in this work represents an adaptable and cost-effective platform capable of various sensitive, label-free measurements relevant to the study of biophysics, biomolecular interactions, cell signaling, and a wide range of other life science fields. Further development is necessary for it to be capable of binding assays, or thermodynamic and kinetics measurements; however, this work has laid the foundation for the demonstration of these applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sources and effects of astrophysical gravitational radiation are explained briefly to motivate discussion of the Caltech 40 meter antenna, which employs laser interferometry to monitor proper distances between inertial test masses. Practical considerations in construction of the apparatus are described. Redesign of test mass systems has resulted in a reduction of noise from internal mass vibrations by up to two orders of magnitude at some frequencies. A laser frequency stabilization system was developed which corrects the frequency of an argon ion laser to a residual fluctuation level bounded by the spectral density √s_v(f) ≤ 60µHz/√Hz, at fluctuation frequencies near 1.2 kHz. These and other improvements have contributed to reducing the spectral density of equivalent gravitational wave strain noise to √s_h(f)≈10^(-19)/√ Hz at these frequencies.

Finally, observations made with the antenna in February and March of 1987 are described. Kilohertz-band gravitational waves produced by the remnant of the recent supernova are shown to be theoretically unlikely at the strength required for confident detection in this antenna (then operating at poorer sensitivity than that quoted above). A search for periodic waves in the recorded data, comprising Fourier analysis of four 105-second samples of the antenna strain signal, was used to place new upper limits on periodic gravitational radiation at frequencies between 305 Hz and 5 kHz. In particular, continuous waves of any polarization are ruled out above strain amplitudes of 1.2 x 10^(-18) R.M.S. for waves emanating from the direction of the supernova, and 6.2 x 10^(-19) R.M.S. for waves emanating from the galactic center, between 1.5 and 4 kilohertz. Between 305 Hz and 5kHz no strains greater than 1.2 x 10^(-17) R.M.S. were detected from either direction. Limitations of the analysis and potential improvements are discussed, as are prospects for future searches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetic and electronic processes in a Cu/CuCl double pulsed laser were investigated by measuring discharge and laser pulse characteristics, and by computer modeling. There are two time scales inherent to the operation of the Cu/CuCl laser. The first is during the interpulse afterglow (tens to hundreds of microseconds). The second is during the pumping pulse (tens of nanoseconds). It was found that the character of the pumping pulse is largely determined by the initial conditions provided by the interpulse afterglow. By tailoring the dissociation pulse to be long and low energy, and by conditioning the afterglow, one may select the desired initial conditions and thereby significantly improve laser performance. With a low energy dissociation pulse, the fraction of metastable copper obtained from a CuCl dissociation is low. By maintaining the afterglow, contributions to the metastable state from ion recombinations are prevented, and the plasma impedance remains low thereby increasing the rate of current rise during the pumping pulse. Computer models for the dissociation pulse, afterglow, pumping pulse and laser pulse reproduced experimentally observed behavior of laser pulse energy and power as a function of time delay, pumping pulse characteristics, and buffer gas pressure. The sensitivity of laser pulse properties on collisional processes (e.g., CuCl reassociation rates) was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combustion of CS₂ and O₂ in a free burning laminar mixing layer at low pressure was investigated using emission spectroscopy. The temperature fields, CO vibrational distributions, and CO concentrations were measured. The data indicate that vibration ally excited CO was produced in the mixing layer flames, but that there were no vibrational population inversions. In comparison with the CS₂/O₂ premixed flames, the mixing layer flames favored greater production of COS and CO₂. Computer modeling was used to study the mechanisms responsible for the production of COS and CO₂, and to study how the branching chain mechanism responsible for production of CO affects the behavior of the mixing layer flame. The influences of the gas additives, N₂O, COS, and CNBr, were also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work contains 4 topics dealing with the properties of the luminescence from Ge.

The temperature, pump-power and time dependences of the photoluminescence spectra of Li-, As-, Ga-, and Sb-doped Ge crystals were studied. For impurity concentrations less than about 1015cm-3, emissions due to electron-hole droplets can clearly be identified. For impurity concentrations on the order of 1016cm-3, the broad lines in the spectra, which have previously been attributed to the emission from the electron-hole-droplet, were found to possess pump-power and time dependent line shape. These properties show that these broad lines cannot be due to emission of electron-hole-droplets alone. We interpret these lines to be due to a combination of emissions from (1) electron-hole- droplets, (2) broadened multiexciton complexes, (3) broadened bound-exciton, and (4) plasma of electrons and holes. The properties of the electron-hole-droplet in As-doped Ge were shown to agree with theoretical predictions.

The time dependences of the luminescence intensities of the electron-hole-droplet in pure and doped Ge were investigated at 2 and 4.2°K. The decay of the electron-hole-droplet in pure Ge at 4.2°K was found to be pump-power dependent and too slow to be explained by the widely accepted model due to Pokrovskii and Hensel et al. Detailed study of the decay of the electron-hole-droplets in doped Ge were carried out for the first time, and we find no evidence of evaporation of excitons by electron-hole-droplets at 4.2°K. This doped Ge result is unexplained by the model of Pokrovskii and Hensel et al. It is shown that a model based on a cloud of electron-hole-droplets generated in the crystal and incorporating (1) exciton flow among electron-hole-droplets in the cloud and (2) exciton diffusion away from the cloud is capable of explaining the observed results.

It is shown that impurities, introduced during device fabrication, can lead to the previously reported differences of the spectra of laser-excited high-purity Ge and electrically excited Ge double injection devices. By properly choosing the device geometry so as to minimize this Li contamination, it is shown that the Li concentration in double injection devices may be reduced to less than about 1015cm-3 and electrically excited luminescence spectra similar to the photoluminescence spectra of pure Ge may be produced. This proves conclusively that electron-hole-droplets may be created in double injection devices by electrical excitation.

The ratio of the LA- to TO-phonon-assisted luminescence intensities of the electron-hole-droplet is demonstrated to be equal to the high temperature limit of the same ratio of the exciton for Ge. This result gives one confidence to determine similar ratios for the electron-hole-droplet from the corresponding exciton ratio in semiconductors in which the ratio for the electron-hole-droplet cannot be determined (e.g., Si and GaP). Knowing the value of this ratio for the electron-hole-droplet, one can obtain accurate values of many parameters of the electron-hole-droplet in these semiconductors spectroscopically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three subjects related to epitaxial GaAs-GaAlAs optoelectronic devices are discussed in this thesis. They are:

1. Embedded Epitaxy

This is a technique of selective multilayer growth of GaAs- Ga1-xAlxAs single crystal structures through stripe openings in masking layers on GaAs substrates. This technique results in prismatic layers of GaAs and Ga1-xAlxAs "embedded" in each other and leads to controllable uniform structures terminated by crystal faces. The dependence of the growth habit on the orientation of the stripe openings has been studied. Room temperature embedded double heterostructure lasers have been fabricated using this technique. Threshold current densities as low as 1.5 KA/cm2 have been achieved.

2. Barrier Controlled PNPN Laser Diode

It is found that the I-V characteristics of a PNPN device can be controlled by using potential barriers in the base regions. Based on this principle, GaAs-GaAlAs heterostructure PNPN laser diodes have been fabricated. GaAlAs potential barriers in the bases control not only the electrical but also the optical properties of the device. PNPN lasers with low threshold currents and high breakover voltage have been achieved. Numerical calculations of this barrier controlled structure are presented in the ranges where the total current is below the holding point and near the lasing threshold.

3. Injection Lasers on Semi-Insulating Substrates

GaAs-GaAlAs heterostructure lasers fabricated on semi-insulating substrates have been studied. Two different laser structures achieved are: (1) Crowding effect lasers, (2) Lateral injection lasers. Experimental results and the working principles underlying the operation of these lasers are presented. The gain induced guiding mechanism is used to explain the lasers' far field radiation patterns. It is found that Zn diffusion in Ga1-xAlxAs depends on the Al content x, and that GaAs can be used as the diffusion mask for Zn diffusion in Ga1-xAlxAs. Lasers having very low threshold currents and operating in a stable single mode have been achieved. Because these lasers are fabricated on semi-insulating substrates, it is possible to integrate them with other electronic devices on the same substrate. An integrated device, which consists of a crowding effect laser and a Gunn oscillator on a common semi-insulating GaAs substrate, has been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses possess very specific methods of targeting and entering cells. These methods would be extremely useful if they could also be applied to drug delivery, but little is known about the molecular mechanisms of the viral entry process. In order to gain further insight into mechanisms of viral entry, chemical and spectroscopic studies in two systems were conducted, examining hydrophobic protein-lipid interactions during Sendai virus membrane fusion, and the kinetics of bacteriophage λ DNA injection.

Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator3-(trifluoromethyl)-3-(m-^(125 )I] iodophenyl)diazirine (TID). The probe was incorporated in target membranes prior to virus addition and photolysis. During Sendai virus fusion with liposomes composed of cardiolipin (CL) or phosphatidylserine (PS), the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F_1 subunit with the target membrane is an initiating event in fusion. Correlation of the hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. Separation of proteins after labeling shows that the F_1 subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and that the F_2 subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions, after titration of acidic amino acids. HN labeling under nonfusogenic conditions reveals that viral binding may involve hydrophobic as well as electrostatic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions.

Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes, and that HN binding may involve hydrophobic interactions as well. Labeling of the erythrocyte membranes revealed close membrane association of spectrin, which may play a role in regulating membrane fusion. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion. Correlation of these results with earlier studies of membrane hydration and fusion kinetics provides a more detailed view of the mechanism of fusion.

The kinetics of DNA injection by bacteriophage λ. into liposomes bearing reconstituted receptors were measured using fluorescence spectroscopy. LamB, the bacteriophage receptor, was extracted from bacteria and reconstituted into liposomes by detergent removal dialysis. The DNA binding fluorophore ethidium bromide was encapsulated in the liposomes during dialysis. Enhanced fluorescence of ethidium bromide upon binding to injected DNA was monitored, and showed that injection is a rapid, one-step process. The bimolecular rate law, determined by the method of initial rates, revealed that injection occurs several times faster than indicated by earlier studies employing indirect assays.

It is hoped that these studies will increase the understanding of the mechanisms of virus entry into cells, and to facilitate the development of virus-mimetic drug delivery strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strength at extreme pressures (>1 Mbar or 100 GPa) and high strain rates (106-108 s-1) of materials is not well characterized. The goal of the research outlined in this thesis is to study the strength of tantalum (Ta) at these conditions. The Omega Laser in the Laboratory for Laser Energetics in Rochester, New York is used to create such extreme conditions. Targets are designed with ripples or waves on the surface, and these samples are subjected to high pressures using Omega’s high energy laser beams. In these experiments, the observational parameter is the Richtmyer-Meshkov (RM) instability in the form of ripple growth on single-mode ripples. The experimental platform used for these experiments is the “ride-along” laser compression recovery experiments, which provide a way to recover the specimens having been subjected to high pressures. Six different experiments are performed on the Omega laser using single-mode tantalum targets at different laser energies. The energy indicates the amount of laser energy that impinges the target. For each target, values for growth factor are obtained by comparing the profile of ripples before and after the experiment. With increasing energy, the growth factor increased.

Engineering simulations are used to interpret and correlate the measurements of growth factor to a measure of strength. In order to validate the engineering constitutive model for tantalum, a series of simulations are performed using the code Eureka, based on the Optimal Transportation Meshfree (OTM) method. Two different configurations are studied in the simulations: RM instabilities in single and multimode ripples. Six different simulations are performed for the single ripple configuration of the RM instability experiment, with drives corresponding to laser energies used in the experiments. Each successive simulation is performed at higher drive energy, and it is observed that with increasing energy, the growth factor increases. Overall, there is favorable agreement between the data from the simulations and the experiments. The peak growth factors from the simulations and the experiments are within 10% agreement. For the multimode simulations, the goal is to assist in the design of the laser driven experiments using the Omega laser. A series of three-mode and four-mode patterns are simulated at various energies and the resulting growth of the RM instability is computed. Based on the results of the simulations, a configuration is selected for the multimode experiments. These simulations also serve as validation for the constitutive model and the material parameters for tantalum that are used in the simulations.

By designing samples with initial perturbations in the form of single-mode and multimode ripples and subjecting these samples to high pressures, the Richtmyer-Meshkov instability is investigated in both laser compression experiments and simulations. By correlating the growth of these ripples to measures of strength, a better understanding of the strength of tantalum at high pressures is achieved.