5 resultados para MESSENGER-RNA STABILITY

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early embryogenesis in metazoa is controlled by maternally synthesized products. Among these products, the mature egg is loaded with transcripts representing approximately two thirds of the genome. A subset of this maternal RNA pool is degraded prior to the transition to zygotic control of development. This transfer of control of development from maternal to zygotic products is referred to as the midblastula transition (or MBT). It is believed that the degradation of maternal transcripts is required to terminate maternal control of development and to allow zygotic control of development to begin. Until now this process of maternal transcript degradation and the subsequent timing of the MBT has been poorly understood. I have demonstrated that in the early embryo there are two independent RNA degradation pathways, either of which is sufficient for transcript elimination. However, only the concerted action of both pathways leads to elimination of transcripts with the correct timing, at the MBT. The first pathway is maternally encoded, is triggered by egg activation, and is targeted to specific classes of mRNAs through cis-acting elements in the 3' untranslated region (UTR}. The second pathway is activated 2 hr after fertilization and functions together with the maternal pathway to ensure that transcripts are degraded by the MBT. In addition, some transcripts fail to degrade at select subcellular locations adding an element of spatial control to RNA degradation. The spatial control of RNA degradation is achieved by protecting, or masking, transcripts from the degradation machinery. The RNA degradation and protection events are regulated by distinct cis-elements in the 3' untranslated region (UTR). These results provide the first systematic dissection of this highly conserved process in development and demonstrate that RNA degradation is a novel mechanism used for both temporal and spatial control of development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assembling a nervous system requires exquisite specificity in the construction of neuronal connectivity. One method by which such specificity is implemented is the presence of chemical cues within the tissues, differentiating one region from another, and the presence of receptors for those cues on the surface of neurons and their axons that are navigating within this cellular environment.

Connections from one part of the nervous system to another often take the form of a topographic mapping. One widely studied model system that involves such a mapping is the vertebrate retinotectal projection-the set of connections between the eye and the optic tectum of the midbrain, which is the primary visual center in non-mammals and is homologous to the superior colliculus in mammals. In this projection the two-dimensional surface of the retina is mapped smoothly onto the two-dimensional surface of the tectum, such that light from neighboring points in visual space excites neighboring cells in the brain. This mapping is implemented at least in part via differential chemical cues in different regions of the tectum.

The Eph family of receptor tyrosine kinases and their cell-surface ligands, the ephrins, have been implicated in a wide variety of processes, generally involving cellular movement in response to extracellular cues. In particular, they possess expression patterns-i.e., complementary gradients of receptor in retina and ligand in tectum- and in vitro and in vivo activities and phenotypes-i.e., repulsive guidance of axons and defective mapping in mutants, respectively-consistent with the long-sought retinotectal chemical mapping cues.

The tadpole of Xenopus laevis, the South African clawed frog, is advantageous for in vivo retinotectal studies because of its transparency and manipulability. However, neither the expression patterns nor the retinotectal roles of these proteins have been well characterized in this system. We report here comprehensive descriptions in swimming stage tadpoles of the messenger RNA expression patterns of eleven known Xenopus Eph and ephrin genes, including xephrin-A3, which is novel, and xEphB2, whose expression pattern has not previously been published in detail. We also report the results of in vivo protein injection perturbation studies on Xenopus retinotectal topography, which were negative, and of in vitro axonal guidance assays, which suggest a previously unrecognized attractive activity of ephrins at low concentrations on retinal ganglion cell axons. This raises the possibility that these axons find their correct targets in part by seeking out a preferred concentration of ligands appropriate to their individual receptor expression levels, rather than by being repelled to greater or lesser degrees by the ephrins but attracted by some as-yet-unknown cue(s).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After artificial activation or fertilization of non-nucleate fragments or eggs of the sea urchin, the mitochondria actively synthesize RNA. The RNA made in non-nucleate fragments is shown to be mostly single stranded and to be associated primarily with the low speed pellet of centrifuged cellular homogenates.

Protein synthesis is observed in non-nucleate fragments in the presence or absence of the mitochondrial RNA synthesis: it is found to be qualitatively similar but quantitatively less in the absence of the RNA synthesis. The continued syntheses of proteins in the non-nucleate fragments in the absence of mitochondrial RNA synthesis provides additional evidence for the presence of a stable messenger RNA component in the unfertilized sea urchin egg.

Since the uptake or actinomycin D was found to be inhibited by the presence of a fertilization membrane, ethidium bromide, at 10 μgs/ml, is used as an effective inhibitor of RNA synthesis in non-nucleate fragments and in early cleavage stage embryos. However, this same concentration of ethidium bromide is found to be only partially effective in blocking RNA synthesis at the mesenchyme blastula stage of development.

Low concentrations of ethidium bromide (2 and 5 μgs/ml) are found not to be lethal but to be capable of producing moderate developmental defects. In the presence of concentrations of ethidium bromide adequate to inhibit all the mitochondrial RNA synthesis (10 μgs/ml of ethidium bromide), from fertilization on, the embryos do not cleave beyond the 4-8 cell stages. When similar concentrations of ethidium bromide are added at an early mesenchyme blastula stage, the embryos do not gastrulate but continue to swim for more than 24 additional hours (adequate for control embryos to develop to a late prism stage). These results lead to the conclusion that mitochondrial RNA synthesis may be very essential for normal development to occur.

DNA is synthesized in the non-nucleate fragments of sea urchin eggs. None of the newly synthesized DNA is found in the closed circular form. When phenol extracted directly from the fragments, the DNA is found to sediment at approximately 38 and 27s in sucrose gradients but neither of these size classes could be found associated with the isolated mitochondria. The template for the synthesis of DNA in non-nucleate fragments remains unknown.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation is divided into three parts.

The first section is concerned with protein synthesis in cellfree systems from reticulocytes. The sub-cellular reticulocyte fractions, reagents, etc. have been examined for the presence of traces of ribonuclease, using. an assay based upon the loss of infectivity of RNA fran bacteriophage MS2. This assay is sensitive to 5 x 10-7 γ RNase/ml. In addition, the loss of synthetic capacity of an 80S ribosome on dissociation has been studied, and can be attributed to loss of messenger RNA when the monomer is separated into subunits. The presence of ribonuclease has been shown to be a major cause of polyribosome disintegration during cell-free protein synthesis.

The second section concerns the changes in ribosomes and polyribosomes which occur during the maturation of a reticulocyte into an erythrocyte. With increasing age, the cells lose a large proportion of the ribonucleoprotein, but the percentage of ribosomes present as polyribosomes is only slightly altered. The loss of hemoglobin synthesis on maturation is probably due to both the loss of total ribosomes and to the lessened specific activity of the polyribosomes.

The third section contains analytical ultracentrifugation data on 80S ribosomes, polyribosomes, and ribosomal RNA from reticulocytes. The 60s and 40s subunits, obtained by dissociation of the 80s particle with inorganic pyrophosphate, were also studied. The RNA from reticulocyte ribosomes has been examined under a variety of denaturing conditions, including dimethyl sulfoxide treatment, formaldehyde reaction and thermal denaturation. From these studies we can conclude that the 28S and 16S RNA's are single polynucleotide chains and are not made up of smaller RNA subunits hydrogen-bonded together.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to interface with and program cellular function remains a challenging research frontier in biotechnology. Although the emerging field of synthetic biology has recently generated a variety of gene-regulatory strategies based on synthetic RNA molecules, few strategies exist through which to control such regulatory effects in response to specific exogenous or endogenous molecular signals. Here, we present the development of an engineered RNA-based device platform to detect and act on endogenous protein signals, linking these signals to the regulation of genes and thus cellular function.

We describe efforts to develop an RNA-based device framework for regulating endogenous genes in human cells. Previously developed RNA control devices have demonstrated programmable ligand-responsive genetic regulation in diverse cell types, and we attempted to adapt this class of cis-acting control elements to function in trans. We divided the device into two strands that reconstitute activity upon hybridization. Device function was optimized using an in vivo model system, and we found that device sequence is not as flexible as previously reported. After verifying the in vitro activity of our optimized design, we attempted to establish gene regulation in a human cell line using additional elements to direct device stability, structure, and localization. The significant limitations of our platform prevented endogenous gene regulation.

We next describe the development of a protein-responsive RNA-based regulatory platform. Employing various design strategies, we demonstrated functional devices that both up- and downregulate gene expression in response to a heterologous protein in a human cell line. The activity of our platform exceeded that of a similar, small-molecule-responsive platform. We demonstrated the ability of our devices to respond to both cytoplasmic- and nuclear-localized protein, providing insight into the mechanism of action and distinguishing our platform from previously described devices with more restrictive ligand localization requirements. Finally, we demonstrated the versatility of our device platform by developing a regulatory device that responds to an endogenous signaling protein.

The foundational tool we present here possesses unique advantages over previously described RNA-based gene-regulatory platforms. This genetically encoded technology may find future applications in the development of more effective diagnostic tools and targeted molecular therapy strategies.