1 resultado para Lp-PLA2
em CaltechTHESIS
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (2)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (53)
- CentAUR: Central Archive University of Reading - UK (11)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (226)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (8)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons at Florida International University (2)
- Duke University (16)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (36)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (54)
- Instituto Politécnico do Porto, Portugal (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (6)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QSpace: Queen's University - Canada (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (17)
- Queensland University of Technology - ePrints Archive (16)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (6)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositorio Institucional de la Universidad Nacional Agraria (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (167)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad del Rosario, Colombia (29)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (3)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal, Canada (9)
- University of Michigan (7)
Resumo:
This is a two-part thesis concerning the motion of a test particle in a bath. In part one we use an expansion of the operator PLeit(1-P)LLP to shape the Zwanzig equation into a generalized Fokker-Planck equation which involves a diffusion tensor depending on the test particle's momentum and the time.
In part two the resultant equation is studied in some detail for the case of test particle motion in a weakly coupled Lorentz Gas. The diffusion tensor for this system is considered. Some of its properties are calculated; it is computed explicitly for the case of a Gaussian potential of interaction.
The equation for the test particle distribution function can be put into the form of an inhomogeneous Schroedinger equation. The term corresponding to the potential energy in the Schroedinger equation is considered. Its structure is studied, and some of its simplest features are used to find the Green's function in the limiting situations of low density and long time.