3 resultados para Longitudinal aberration

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.

A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.

In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.

A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faults can slip either aseismically or through episodic seismic ruptures, but we still do not understand the factors which determine the partitioning between these two modes of slip. This challenge can now be addressed thanks to the dense set of geodetic and seismological networks that have been deployed in various areas with active tectonics. The data from such networks, as well as modern remote sensing techniques, indeed allow documenting of the spatial and temporal variability of slip mode and give some insight. This is the approach taken in this study, which is focused on the Longitudinal Valley Fault (LVF) in Eastern Taiwan. This fault is particularly appropriate since the very fast slip rate (about 5 cm/yr) is accommodated by both seismic and aseismic slip. Deformation of anthropogenic features shows that aseismic creep accounts for a significant fraction of fault slip near the surface, but this fault also released energy seismically, since it has produced five M_w>6.8 earthquakes in 1951 and 2003. Moreover, owing to the thrust component of slip, the fault zone is exhumed which allows investigation of deformation mechanisms. In order to put constraint on the factors that control the mode of slip, we apply a multidisciplinary approach that combines modeling of geodetic observations, structural analysis and numerical simulation of the "seismic cycle". Analyzing a dense set of geodetic and seismological data across the Longitudinal Valley, including campaign-mode GPS, continuous GPS (cGPS), leveling, accelerometric, and InSAR data, we document the partitioning between seismic and aseismic slip on the fault. For the time period 1992 to 2011, we found that about 80-90% of slip on the LVF in the 0-26 km seismogenic depth range is actually aseismic. The clay-rich Lichi M\'elange is identified as the key factor promoting creep at shallow depth. Microstructural investigations show that deformation within the fault zone must have resulted from a combination of frictional sliding at grain boundaries, cataclasis and pressure solution creep. Numerical modeling of earthquake sequences have been performed to investigate the possibility of reproducing the results from the kinematic inversion of geodetic and seismological data on the LVF. We first investigate the different modeling strategy that was developed to explore the role and relative importance of different factors on the manner in which slip accumulates on faults. We compare the results of quasi dynamic simulations and fully dynamic ones, and we conclude that ignoring the transient wave-mediated stress transfers would be inappropriate. We therefore carry on fully dynamic simulations and succeed in qualitatively reproducing the wide range of observations for the southern segment of the LVF. We conclude that the spatio-temporal evolution of fault slip on the Longitudinal Valley Fault over 1997-2011 is consistent to first order with prediction from a simple model in which a velocity-weakening patch is embedded in a velocity-strengthening area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study concerns the longitudinal dispersion of fluid particles which are initially distributed uninformly over one cross section of a uniform, steady, turbulent open channel flow. The primary focus is on developing a method to predict the rate of dispersion in a natural stream.

Taylor's method of determining a dispersion coefficient, previously applied to flow in pipes and two-dimensional open channels, is extended to a class of three-dimensional flows which have large width-to-depth ratios, and in which the velocity varies continuously with lateral cross-sectional position. Most natural streams are included. The dispersion coefficient for a natural stream may be predicted from measurements of the channel cross-sectional geometry, the cross-sectional distribution of velocity, and the overall channel shear velocity. Tracer experiments are not required.

Large values of the dimensionless dispersion coefficient D/rU* are explained by lateral variations in downstream velocity. In effect, the characteristic length of the cross section is shown to be proportional to the width, rather than the hydraulic radius. The dimensionless dispersion coefficient depends approximately on the square of the width to depth ratio.

A numerical program is given which is capable of generating the entire dispersion pattern downstream from an instantaneous point or plane source of pollutant. The program is verified by the theory for two-dimensional flow, and gives results in good agreement with laboratory and field experiments.

Both laboratory and field experiments are described. Twenty-one laboratory experiments were conducted: thirteen in two-dimensional flows, over both smooth and roughened bottoms; and eight in three-dimensional flows, formed by adding extreme side roughness to produce lateral velocity variations. Four field experiments were conducted in the Green-Duwamish River, Washington.

Both laboratory and flume experiments prove that in three-dimensional flow the dominant mechanism for dispersion is lateral velocity variation. For instance, in one laboratory experiment the dimensionless dispersion coefficient D/rU* (where r is the hydraulic radius and U* the shear velocity) was increased by a factory of ten by roughening the channel banks. In three-dimensional laboratory flow, D/rU* varied from 190 to 640, a typical range for natural streams. For each experiment, the measured dispersion coefficient agreed with that predicted by the extension of Taylor's analysis within a maximum error of 15%. For the Green-Duwamish River, the average experimentally measured dispersion coefficient was within 5% of the prediction.