10 resultados para Limit of meaning of a Scientific Theory
em CaltechTHESIS
Resumo:
This dissertation consists of two parts. The first part presents an explicit procedure for applying multi-Regge theory to production processes. As an illustrative example, the case of three body final states is developed in detail, both with respect to kinematics and multi-Regge dynamics. Next, the experimental consistency of the multi-Regge hypothesis is tested in a specific high energy reaction; the hypothesis is shown to provide a good qualitative fit to the data. In addition, the results demonstrate a severe suppression of double Pomeranchon exchange, and show the coupling of two "Reggeons" to an external particle to be strongly damped as the particle's mass increases. Finally, with the use of two body Regge parameters, order of magnitude estimates of the multi-Regge cross section for various reactions are given.
The second part presents a diffraction model for high energy proton-proton scattering. This model developed by Chou and Yang assumes high energy elastic scattering results from absorption of the incident wave into the many available inelastic channels, with the absorption proportional to the amount of interpenetrating hadronic matter. The assumption that the hadronic matter distribution is proportional to the charge distribution relates the scattering amplitude for pp scattering to the proton form factor. The Chou-Yang model with the empirical proton form factor as input is then applied to calculate a high energy, fixed momentum transfer limit for the scattering cross section, This limiting cross section exhibits the same "dip" or "break" structure indicated in present experiments, but falls significantly below them in magnitude. Finally, possible spin dependence is introduced through a weak spin-orbit type term which gives rather good agreement with pp polarization data.
Resumo:
Computational imaging is flourishing thanks to the recent advancement in array photodetectors and image processing algorithms. This thesis presents Fourier ptychography, which is a computational imaging technique implemented in microscopy to break the limit of conventional optics. With the implementation of Fourier ptychography, the resolution of the imaging system can surpass the diffraction limit of the objective lens's numerical aperture; the quantitative phase information of a sample can be reconstructed from intensity-only measurements; and the aberration of a microscope system can be characterized and computationally corrected. This computational microscopy technique enhances the performance of conventional optical systems and expands the scope of their applications.
Resumo:
In this thesis we uncover a new relation which links thermodynamics and information theory. We consider time as a channel and the detailed state of a physical system as a message. As the system evolves with time, ever present noise insures that the "message" is corrupted. Thermodynamic free energy measures the approach of the system toward equilibrium. Information theoretical mutual information measures the loss of memory of initial state. We regard the free energy and the mutual information as operators which map probability distributions over state space to real numbers. In the limit of long times, we show how the free energy operator and the mutual information operator asymptotically attain a very simple relationship to one another. This relationship is founded on the common appearance of entropy in the two operators and on an identity between internal energy and conditional entropy. The use of conditional entropy is what distinguishes our approach from previous efforts to relate thermodynamics and information theory.
Resumo:
The primary focus of this thesis is on the interplay of descriptive set theory and the ergodic theory of group actions. This incorporates the study of turbulence and Borel reducibility on the one hand, and the theory of orbit equivalence and weak equivalence on the other. Chapter 2 is joint work with Clinton Conley and Alexander Kechris; we study measurable graph combinatorial invariants of group actions and employ the ultraproduct construction as a way of constructing various measure preserving actions with desirable properties. Chapter 3 is joint work with Lewis Bowen; we study the property MD of residually finite groups, and we prove a conjecture of Kechris by showing that under general hypotheses property MD is inherited by a group from one of its co-amenable subgroups. Chapter 4 is a study of weak equivalence. One of the main results answers a question of Abért and Elek by showing that within any free weak equivalence class the isomorphism relation does not admit classification by countable structures. The proof relies on affirming a conjecture of Ioana by showing that the product of a free action with a Bernoulli shift is weakly equivalent to the original action. Chapter 5 studies the relationship between mixing and freeness properties of measure preserving actions. Chapter 6 studies how approximation properties of ergodic actions and unitary representations are reflected group theoretically and also operator algebraically via a group's reduced C*-algebra. Chapter 7 is an appendix which includes various results on mixing via filters and on Gaussian actions.
Resumo:
Disorder and interactions both play crucial roles in quantum transport. Decades ago, Mott showed that electron-electron interactions can lead to insulating behavior in materials that conventional band theory predicts to be conducting. Soon thereafter, Anderson demonstrated that disorder can localize a quantum particle through the wave interference phenomenon of Anderson localization. Although interactions and disorder both separately induce insulating behavior, the interplay of these two ingredients is subtle and often leads to surprising behavior at the periphery of our current understanding. Modern experiments probe these phenomena in a variety of contexts (e.g. disordered superconductors, cold atoms, photonic waveguides, etc.); thus, theoretical and numerical advancements are urgently needed. In this thesis, we report progress on understanding two contexts in which the interplay of disorder and interactions is especially important.
The first is the so-called “dirty” or random boson problem. In the past decade, a strong-disorder renormalization group (SDRG) treatment by Altman, Kafri, Polkovnikov, and Refael has raised the possibility of a new unstable fixed point governing the superfluid-insulator transition in the one-dimensional dirty boson problem. This new critical behavior may take over from the weak-disorder criticality of Giamarchi and Schulz when disorder is sufficiently strong. We analytically determine the scaling of the superfluid susceptibility at the strong-disorder fixed point and connect our analysis to recent Monte Carlo simulations by Hrahsheh and Vojta. We then shift our attention to two dimensions and use a numerical implementation of the SDRG to locate the fixed point governing the superfluid-insulator transition there. We identify several universal properties of this transition, which are fully independent of the microscopic features of the disorder.
The second focus of this thesis is the interplay of localization and interactions in systems with high energy density (i.e., far from the usual low energy limit of condensed matter physics). Recent theoretical and numerical work indicates that localization can survive in this regime, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in isolated quantum systems: it separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting (“ergodic”) phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present evidence that many-body localization also occurs in quasiperiodic systems that lack true disorder.
Resumo:
In Part I, we construct a symmetric stress-energy-momentum pseudo-tensor for the gravitational fields of Brans-Dicke theory, and use this to establish rigorously conserved integral expressions for energy-momentum Pi and angular momentum Jik. Application of the two-dimensional surface integrals to the exact static spherical vacuum solution of Brans leads to an identification of our conserved mass with the active gravitational mass. Application to the distant fields of an arbitrary stationary source reveals that Pi and Jik have the same physical interpretation as in general relativity. For gravitational waves whose wavelength is small on the scale of the background radius of curvature, averaging over several wavelengths in the Brill-Hartle-Isaacson manner produces a stress-energy-momentum tensor for gravitational radiation which may be used to calculate the changes in Pi and Jik of their source.
In Part II, we develop strong evidence in favor of a conjecture by Penrose--that, in the Brans-Dicke theory, relativistic gravitational collapse in three dimensions produce black holes identical to those of general relativity. After pointing out that any black hole solution of general relativity also satisfies Brans-Dicke theory, we establish the Schwarzschild and Kerr geometries as the only possible spherical and axially symmetric black hole exteriors, respectively. Also, we show that a Schwarzschild geometry is necessarily formed in the collapse of an uncharged sphere.
Appendices discuss relationships among relativistic gravity theories and an example of a theory in which black holes do not exist.
Resumo:
The Fokker-Planck (FP) equation is used to develop a general method for finding the spectral density for a class of randomly excited first order systems. This class consists of systems satisfying stochastic differential equations of form ẋ + f(x) = m/Ʃ/j = 1 hj(x)nj(t) where f and the hj are piecewise linear functions (not necessarily continuous), and the nj are stationary Gaussian white noise. For such systems, it is shown how the Laplace-transformed FP equation can be solved for the transformed transition probability density. By manipulation of the FP equation and its adjoint, a formula is derived for the transformed autocorrelation function in terms of the transformed transition density. From this, the spectral density is readily obtained. The method generalizes that of Caughey and Dienes, J. Appl. Phys., 32.11.
This method is applied to 4 subclasses: (1) m = 1, h1 = const. (forcing function excitation); (2) m = 1, h1 = f (parametric excitation); (3) m = 2, h1 = const., h2 = f, n1 and n2 correlated; (4) the same, uncorrelated. Many special cases, especially in subclass (1), are worked through to obtain explicit formulas for the spectral density, most of which have not been obtained before. Some results are graphed.
Dealing with parametrically excited first order systems leads to two complications. There is some controversy concerning the form of the FP equation involved (see Gray and Caughey, J. Math. Phys., 44.3); and the conditions which apply at irregular points, where the second order coefficient of the FP equation vanishes, are not obvious but require use of the mathematical theory of diffusion processes developed by Feller and others. These points are discussed in the first chapter, relevant results from various sources being summarized and applied. Also discussed is the steady-state density (the limit of the transition density as t → ∞).
Resumo:
The effect of intermolecular coupling in molecular energy levels (electronic and vibrational) has been investigated in neat and isotopic mixed crystals of benzene. In the isotopic mixed crystals of C6H6, C6H5D, m-C6H4D2, p-C6H4D2, sym-C6H3D3, C6D5H, and C6D6 in either a C6H6 or C6D6 host, the following phenomena have been observed and interpreted in terms of a refined Frenkel exciton theory: a) Site shifts; b) site group splittings of the degenerate ground state vibrations of C6H6, C6D6, and sym-C6H3D3; c) the orientational effect for the isotopes without a trigonal axis in both the 1B2u electronic state and the ground state vibrations; d) intrasite Fermi resonance between molecular fundamentals due to the reduced symmetry of the crystal site; and e) intermolecular or intersite Fermi resonance between nearly degenerate states of the host and guest molecules. In the neat crystal experiments on the ground state vibrations it was possible to observe many of these phenomena in conjunction with and in addition to the exciton structure.
To theoretically interpret these diverse experimental data, the concepts of interchange symmetry, the ideal mixed crystal, and site wave functions have been developed and are presented in detail. In the interpretation of the exciton data the relative signs of the intermolecular coupling constants have been emphasized, and in the limit of the ideal mixed crystal a technique is discussed for locating the exciton band center or unobserved exciton components. A differentiation between static and dynamic interactions is made in the Frenkel limit which enables the concepts of site effects and exciton coupling to be sharpened. It is thus possible to treat the crystal induced effects in such a fashion as to make their similarities and differences quite apparent.
A calculation of the ground state vibrational phenomena (site shifts and splittings, orientational effects, and exciton structure) and of the crystal lattice modes has been carried out for these systems. This calculation serves as a test of the approximations of first order Frenkel theory and the atom-atom, pair wise interaction model for the intermolecular potentials. The general form of the potential employed was V(r) = Be-Cr - A/r6 ; the force constants were obtained from the potential by assuming the atoms were undergoing simple harmonic motion.
In part II the location and identification of the benzene first and second triplet states (3B1u and 3E1u) is given.
Resumo:
Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.
Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.
Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.
Resumo:
A general solution is presented for water waves generated by an arbitrary movement of the bed (in space and time) in a two-dimensional fluid domain with a uniform depth. The integral solution which is developed is based on a linearized approximation to the complete (nonlinear) set of governing equations. The general solution is evaluated for the specific case of a uniform upthrust or downthrow of a block section of the bed; two time-displacement histories of the bed movement are considered.
An integral solution (based on a linear theory) is also developed for a three-dimensional fluid domain of uniform depth for a class of bed movements which are axially symmetric. The integral solution is evaluated for the specific case of a block upthrust or downthrow of a section of the bed, circular in planform, with a time-displacement history identical to one of the motions used in the two-dimensional model.
Since the linear solutions are developed from a linearized approximation of the complete nonlinear description of wave behavior, the applicability of these solutions is investigated. Two types of non-linear effects are found which limit the applicability of the linear theory: (1) large nonlinear effects which occur in the region of generation during the bed movement, and (2) the gradual growth of nonlinear effects during wave propagation.
A model of wave behavior, which includes, in an approximate manner, both linear and nonlinear effects is presented for computing wave profiles after the linear theory has become invalid due to the growth of nonlinearities during wave propagation.
An experimental program has been conducted to confirm both the linear model for the two-dimensional fluid domain and the strategy suggested for determining wave profiles during propagation after the linear theory becomes invalid. The effect of a more general time-displacement history of the moving bed than those employed in the theoretical models is also investigated experimentally.
The linear theory is found to accurately approximate the wave behavior in the region of generation whenever the total displacement of the bed is much less than the water depth. Curves are developed and confirmed by the experiments which predict gross features of the lead wave propagating from the region of generation once the values of certain nondimensional parameters (which characterize the generation process) are known. For example, the maximum amplitude of the lead wave propagating from the region of generation has been found to never exceed approximately one-half of the total bed displacement. The gross features of the tsunami resulting from the Alaskan earthquake of 27 March 1964 can be estimated from the results of this study.