4 resultados para Lactate minimum test
em CaltechTHESIS
Resumo:
This study addresses the problem of obtaining reliable velocities and displacements from accelerograms, a concern which often arises in earthquake engineering. A closed-form acceleration expression with random parameters is developed to test any strong-motion accelerogram processing method. Integration of this analytical time history yields the exact velocities, displacements and Fourier spectra. Noise and truncation can also be added. A two-step testing procedure is proposed and the original Volume II routine is used as an illustration. The main sources of error are identified and discussed. Although these errors may be reduced, it is impossible to extract the true time histories from an analog or digital accelerogram because of the uncertain noise level and missing data. Based on these uncertainties, a probabilistic approach is proposed as a new accelerogram processing method. A most probable record is presented as well as a reliability interval which reflects the level of error-uncertainty introduced by the recording and digitization process. The data is processed in the frequency domain, under assumptions governing either the initial value or the temporal mean of the time histories. This new processing approach is tested on synthetic records. It induces little error and the digitization noise is adequately bounded. Filtering is intended to be kept to a minimum and two optimal error-reduction methods are proposed. The "noise filters" reduce the noise level at each harmonic of the spectrum as a function of the signal-to-noise ratio. However, the correction at low frequencies is not sufficient to significantly reduce the drifts in the integrated time histories. The "spectral substitution method" uses optimization techniques to fit spectral models of near-field, far-field or structural motions to the amplitude spectrum of the measured data. The extremes of the spectrum of the recorded data where noise and error prevail are then partly altered, but not removed, and statistical criteria provide the choice of the appropriate cutoff frequencies. This correction method has been applied to existing strong-motion far-field, near-field and structural data with promising results. Since this correction method maintains the whole frequency range of the record, it should prove to be very useful in studying the long-period dynamics of local geology and structures.
Resumo:
Isotope dilution thorium and uranium analyses of the Harleton chondrite show a larger scatter than previously observed in equilibrated ordinary chondrites (EOC). The linear correlation of Th/U with 1/U in Harleton (and all EOC data) is produced by variation in the chlorapatite to merrillite mixing ratio. Apatite variations control the U concentrations. Phosphorus variations are compensated by inverse variations in U to preserve the Th/U vs. 1/U correlation. Because the Th/U variations reflect phosphate ampling, a weighted Th/U average should converge to an improved solar system Th/U. We obtain Th/U=3.53 (1-mean=0.10), significantly lower and more precise than previous estimates.
To test whether apatite also produces Th/U variation in CI and CM chondrites, we performed P analyses on the solutions from leaching experiments of Orgueil and Murchison meteorites.
A linear Th/U vs. 1/U correlation in CI can be explained by redistribution of hexavalent U by aqueous fluids into carbonates and sulfates.
Unlike CI and EOC, whole rock Th/U variations in CMs are mostly due to Th variations. A Th/U vs. 1/U linear correlation suggested by previous data for CMs is not real. We distinguish 4 components responsible for the whole rock Th/U variations: (1) P and actinide-depleted matrix containing small amounts of U-rich carbonate/sulfate phases (similar to CIs); (2) CAIs and (3) chondrules are major reservoirs for actinides, (4) an easily leachable phase of high Th/U. likely carbonate produced by CAI alteration. Phosphates play a minor role as actinide and P carrier phases in CM chondrites.
Using our Th/U and minimum galactic ages from halo globular clusters, we calculate relative supernovae production rates for 232Th/238U and 235U/238U for different models of r-process nucleosynthesis. For uniform galactic production, the beginning of the r-process nucleosynthesis must be less than 13 Gyr. Exponentially decreasing production is also consistent with a 13 Gyr age, but very slow decay times are required (less than 35 Gyr), approaching the uniform production. The 15 Gyr Galaxy requires either a fast initial production growth (infall time constant less than 0.5 Gyr) followed by very low decrease (decay time constant greater than 100 Gyr), or the fastest possible decrease (≈8 Gyr) preceded by slow in fall (≈7.5 Gyr).
Resumo:
This is a two-part thesis concerning the motion of a test particle in a bath. In part one we use an expansion of the operator PLeit(1-P)LLP to shape the Zwanzig equation into a generalized Fokker-Planck equation which involves a diffusion tensor depending on the test particle's momentum and the time.
In part two the resultant equation is studied in some detail for the case of test particle motion in a weakly coupled Lorentz Gas. The diffusion tensor for this system is considered. Some of its properties are calculated; it is computed explicitly for the case of a Gaussian potential of interaction.
The equation for the test particle distribution function can be put into the form of an inhomogeneous Schroedinger equation. The term corresponding to the potential energy in the Schroedinger equation is considered. Its structure is studied, and some of its simplest features are used to find the Green's function in the limiting situations of low density and long time.
Resumo:
The problem considered is that of minimizing the drag of a symmetric plate in infinite cavity flow under the constraints of fixed arclength and fixed chord. The flow is assumed to be steady, irrotational, and incompressible. The effects of gravity and viscosity are ignored.
Using complex variables, expressions for the drag, arclength, and chord, are derived in terms of two hodograph variables, Γ (the logarithm of the speed) and β (the flow angle), and two real parameters, a magnification factor and a parameter which determines how much of the plate is a free-streamline.
Two methods are employed for optimization:
(1) The parameter method. Γ and β are expanded in finite orthogonal series of N terms. Optimization is performed with respect to the N coefficients in these series and the magnification and free-streamline parameters. This method is carried out for the case N = 1 and minimum drag profiles and drag coefficients are found for all values of the ratio of arclength to chord.
(2) The variational method. A variational calculus method for minimizing integral functionals of a function and its finite Hilbert transform is introduced, This method is applied to functionals of quadratic form and a necessary condition for the existence of a minimum solution is derived. The variational method is applied to the minimum drag problem and a nonlinear integral equation is derived but not solved.