2 resultados para LETHAL DOSIS

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of prophage integration by phage λ and the function and structure of the chromosomal elements required for λ integration have been studied with the use of λ deletion mutants. Since attφ, the substrate of the integration enzymes, is not essential for λ growth, and since attφ resides in a portion of the λ chromosome which is not necessary for vegetative growth, viable λ deletion mutants were isolated and examined to dissect the structure of attφ.

Deletion mutants were selected from wild type populations by treating the phage under conditions where phage are inactivated at a rate dependent on the DNA content of the particles. A number of deletion mutants were obtained in this way, and many of these mutants proved to have defects in integration. These defects were defined by analyzing the properties of Int-promoted recombination in these att mutants.

The types of mutants found and their properties indicated that attφ has three components: a cross-over point which is bordered on either side by recognition elements whose sequence is specifically required for normal integration. The interactions of the recognition elements in Int-promoted recombination between att mutants was examined and proved to be quite complex. In general, however, it appears that the λ integration system can function with a diverse array of mutant att sites.

The structure of attφ was examined by comparing the genetic properties of various att mutants with their location in the λ chromosome. To map these mutants, the techniques of heteroduplex DNA formation and electron microscopy were employed. It was found that integration cross-overs occur at only one point in attφ and that the recognition sequences that direct the integration enzymes to their site of action are quite small, less than 2000 nucleotides each. Furthermore, no base pair homology was detected between attφ and its bacterial analog, attB. This result clearly demonstrates that λ integration can occur between chromosomes which have little, if any, homology. In this respect, λ integration is unique as a system of recombination since most forms of generalized recombination require extensive base pair homology.

An additional study on the genetic and physical distances in the left arm of the λ genome was described. Here, a large number of conditional lethal nonsense mutants were isolated and mapped, and a genetic map of the entire left arm, comprising a total of 18 genes, was constructed. Four of these genes were discovered in this study. A series of λdg transducing phages was mapped by heteroduplex electron microscopy and the relationship between physical and genetic distances in the left arm was determined. The results indicate that recombination frequency in the left arm is an accurate reflection of physical distances, and moreover, there do not appear to be any undiscovered genes in this segment of the genome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After artificial activation or fertilization of non-nucleate fragments or eggs of the sea urchin, the mitochondria actively synthesize RNA. The RNA made in non-nucleate fragments is shown to be mostly single stranded and to be associated primarily with the low speed pellet of centrifuged cellular homogenates.

Protein synthesis is observed in non-nucleate fragments in the presence or absence of the mitochondrial RNA synthesis: it is found to be qualitatively similar but quantitatively less in the absence of the RNA synthesis. The continued syntheses of proteins in the non-nucleate fragments in the absence of mitochondrial RNA synthesis provides additional evidence for the presence of a stable messenger RNA component in the unfertilized sea urchin egg.

Since the uptake or actinomycin D was found to be inhibited by the presence of a fertilization membrane, ethidium bromide, at 10 μgs/ml, is used as an effective inhibitor of RNA synthesis in non-nucleate fragments and in early cleavage stage embryos. However, this same concentration of ethidium bromide is found to be only partially effective in blocking RNA synthesis at the mesenchyme blastula stage of development.

Low concentrations of ethidium bromide (2 and 5 μgs/ml) are found not to be lethal but to be capable of producing moderate developmental defects. In the presence of concentrations of ethidium bromide adequate to inhibit all the mitochondrial RNA synthesis (10 μgs/ml of ethidium bromide), from fertilization on, the embryos do not cleave beyond the 4-8 cell stages. When similar concentrations of ethidium bromide are added at an early mesenchyme blastula stage, the embryos do not gastrulate but continue to swim for more than 24 additional hours (adequate for control embryos to develop to a late prism stage). These results lead to the conclusion that mitochondrial RNA synthesis may be very essential for normal development to occur.

DNA is synthesized in the non-nucleate fragments of sea urchin eggs. None of the newly synthesized DNA is found in the closed circular form. When phenol extracted directly from the fragments, the DNA is found to sediment at approximately 38 and 27s in sucrose gradients but neither of these size classes could be found associated with the isolated mitochondria. The template for the synthesis of DNA in non-nucleate fragments remains unknown.