2 resultados para L1 Adaptive Control
em CaltechTHESIS
Resumo:
How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner in which food and females promotes aggression.
In the first chapter, we explore how food controls aggression. As in many other species, food promotes aggression in flies, but it is not clear whether food increases aggression per se, or whether aggression is a secondary consequence of increased social interactions caused by aggregation of flies on food. Furthermore, nothing is known about how animals evaluate the quality and quantity of food in the context of competition. We show that food promotes aggression independently of any effect to increase the frequency of contact between males. Food increases aggression but not courtship between males, suggesting that the effect of food on aggression is specific. Next, we show that flies tune the level of aggression according to absolute amount of food rather than other parameters, such as area or concentration of food. Sucrose, a sugar molecule present in many fruits, is sufficient to promote aggression, and detection of sugar via gustatory receptor neurons is necessary for food-promoted aggression. Furthermore, we show that while food is necessary for aggression, too much food decreases aggression. Finally, we show that flies exhibit strategies consistent with a territorial strategy. These data suggest that flies use sweet-sensing gustatory information to guide their decision to fight over a limited quantity of a food resource.
Following up on the findings of the first chapter, we asked how the presence of a conspecific female resource promotes male-male aggression. In the absence of food, group-housed male flies, who normally do not fight even in the presence of food, fight in the presence of females. Unlike food, the presence of females strongly influences proximity between flies. Nevertheless, as group-housed flies do not fight even when they are in small chambers, it is unlikely that the presence of female indirectly increases aggression by first increasing proximity. Unlike food, the presence of females also leads to large increases in locomotion and in male-female courtship behaviors, suggesting that females may influence aggression as well as general arousal. Female cuticular hydrocarbons are required for this effect, as females that do not produce CH pheromones are unable to promote male-male aggression. In particular, 7,11-HD––a female-specific cuticular hydrocarbon pheromone critical for male-female courtship––is sufficient to mediate this effect when it is perfumed onto pheromone-deficient females or males. Recent studies showed that ppk23+ GRNs label two population of GRNs, one of which detects male cuticular hydrocarbons and another labeled by ppk23 and ppk25, which detects female cuticular hydrocarbons. I show that in particular, both of these GRNs control aggression, presumably via detection of female or male pheromones. To further investigate the ways in which these two classes of GRNs control aggression, I developed new genetic tools to independently test the male- and female-sensing GRNs. I show that ppk25-LexA and ppk25-GAL80 faithfully recapitulate the expression pattern of ppk25-GAL4 and label a subset of ppk23+ GRNs. These tools can be used in future studies to dissect the respective functions of male-sensing and female-sensing GRNs in male social behaviors.
Finally, in the last chapter, I discuss quantitative approaches to describe how varying quantities of food and females could control the level of aggression. Flies show an inverse-U shaped aggressive response to varying quantities of food and a flat aggressive response to varying quantities of females. I show how two simple game theoretic models, “prisoner’s dilemma” and “coordination game” could be used to describe the level of aggression we observe. These results suggest that flies may use strategic decision-making, using simple comparisons of costs and benefits.
In conclusion, male-male aggression in Drosophila is controlled by simple gustatory cues from food and females, which are detected by gustatory receptor neurons. Different quantities of resource cues lead to different levels of aggression, and flies show putative territorial behavior, suggesting that fly aggression is a highly strategic adaptive behavior. How these resource cues are integrated with male pheromone cues and give rise to this complex behavior is an interesting subject, which should keep researchers busy in the coming years.
Resumo:
The application of principles from evolutionary biology has long been used to gain new insights into the progression and clinical control of both infectious diseases and neoplasms. This iterative evolutionary process consists of expansion, diversification and selection within an adaptive landscape - species are subject to random genetic or epigenetic alterations that result in variations; genetic information is inherited through asexual reproduction and strong selective pressures such as therapeutic intervention can lead to the adaptation and expansion of resistant variants. These principles lie at the center of modern evolutionary synthesis and constitute the primary reasons for the development of resistance and therapeutic failure, but also provide a framework that allows for more effective control.
A model system for studying the evolution of resistance and control of therapeutic failure is the treatment of chronic HIV-1 infection by broadly neutralizing antibody (bNAb) therapy. A relatively recent discovery is that a minority of HIV-infected individuals can produce broadly neutralizing antibodies, that is, antibodies that inhibit infection by many strains of HIV. Passive transfer of human antibodies for the prevention and treatment of HIV-1 infection is increasingly being considered as an alternative to a conventional vaccine. However, recent evolution studies have uncovered that antibody treatment can exert selective pressure on virus that results in the rapid evolution of resistance. In certain cases, complete resistance to an antibody is conferred with a single amino acid substitution on the viral envelope of HIV.
The challenges in uncovering resistance mechanisms and designing effective combination strategies to control evolutionary processes and prevent therapeutic failure apply more broadly. We are motivated by two questions: Can we predict the evolution to resistance by characterizing genetic alterations that contribute to modified phenotypic fitness? Given an evolutionary landscape and a set of candidate therapies, can we computationally synthesize treatment strategies that control evolution to resistance?
To address the first question, we propose a mathematical framework to reason about evolutionary dynamics of HIV from computationally derived Gibbs energy fitness landscapes -- expanding the theoretical concept of an evolutionary landscape originally conceived by Sewall Wright to a computable, quantifiable, multidimensional, structurally defined fitness surface upon which to study complex HIV evolutionary outcomes.
To design combination treatment strategies that control evolution to resistance, we propose a methodology that solves for optimal combinations and concentrations of candidate therapies, and allows for the ability to quantifiably explore tradeoffs in treatment design, such as limiting the number of candidate therapies in the combination, dosage constraints and robustness to error. Our algorithm is based on the application of recent results in optimal control to an HIV evolutionary dynamics model and is constructed from experimentally derived antibody resistant phenotypes and their single antibody pharmacodynamics. This method represents a first step towards integrating principled engineering techniques with an experimentally based mathematical model in the rational design of combination treatment strategies and offers predictive understanding of the effects of combination therapies of evolutionary dynamics and resistance of HIV. Preliminary in vitro studies suggest that the combination antibody therapies predicted by our algorithm can neutralize heterogeneous viral populations despite containing resistant mutations.