1 resultado para Korbut, Olga , 1955 -
em CaltechTHESIS
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (26)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (52)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (12)
- Biblioteca Digital da Câmara dos Deputados (5)
- Biblioteca Digital de la Universidad Católica Argentina (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (1)
- Bibloteca do Senado Federal do Brasil (3)
- Biodiversity Heritage Library, United States (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Boston University Digital Common (1)
- Brock University, Canada (9)
- CaltechTHESIS (1)
- Cámara de Comercio de Bogotá, Colombia (1)
- CentAUR: Central Archive University of Reading - UK (4)
- Center for Jewish History Digital Collections (21)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (218)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Howard @ Howard University | Howard University Research (1)
- Digital Peer Publishing (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (17)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (14)
- Harvard University (7)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (234)
- Ministerio de Cultura, Spain (14)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (246)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Queensland University of Technology - ePrints Archive (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad Autónoma de Nuevo León, Mexico (5)
- Universidad de Alicante (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (1)
- Universita di Parma (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (7)
- University of Michigan (2)
Resumo:
In a 1955 paper, Ky Fan, Olga Taussky, and John Todd presented discrete analogues of inequalities of Wirtinger type, and by taking limits they were able to recover the continuous inequalities. We generalize their techniques to mixed and higher derivatives and inequalities with weight functions in the integrals. We have also considered analogues of inequalities of Müller and Redheffer and have used these inequalities to derive a necessary and sufficient condition on ordered pairs of numbers so that the first number is the square norm of the kth derivative of some periodic function and the second number is the square norm of the mth derivative of the same periodic function.