7 resultados para Kennedy, Robert F., 1925-1968.

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model equation for water waves has been suggested by Whitham to study, qualitatively at least, the different kinds of breaking. This is an integro-differential equation which combines a typical nonlinear convection term with an integral for the dispersive effects and is of independent mathematical interest. For an approximate kernel of the form e^(-b|x|) it is shown first that solitary waves have a maximum height with sharp crests and secondly that waves which are sufficiently asymmetric break into "bores." The second part applies to a wide class of bounded kernels, but the kernel giving the correct dispersion effects of water waves has a square root singularity and the present argument does not go through. Nevertheless the possibility of the two kinds of breaking in such integro-differential equations is demonstrated.

Difficulties arise in finding variational principles for continuum mechanics problems in the Eulerian (field) description. The reason is found to be that continuum equations in the original field variables lack a mathematical "self-adjointness" property which is necessary for Euler equations. This is a feature of the Eulerian description and occurs in non-dissipative problems which have variational principles for their Lagrangian description. To overcome this difficulty a "potential representation" approach is used which consists of transforming to new (Eulerian) variables whose equations are self-adjoint. The transformations to the velocity potential or stream function in fluids or the scaler and vector potentials in electromagnetism often lead to variational principles in this way. As yet no general procedure is available for finding suitable transformations. Existing variational principles for the inviscid fluid equations in the Eulerian description are reviewed and some ideas on the form of the appropriate transformations and Lagrangians for fluid problems are obtained. These ideas are developed in a series of examples which include finding variational principles for Rossby waves and for the internal waves of a stratified fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a sphere immersed in a rarefied monatomic gas with zero mean flow. The distribution function of the molecules at infinity is chosen to be a Maxwellian. The boundary condition at the body is diffuse reflection with perfect accommodation to the surface temperature. The microscopic flow of particles about the sphere is modeled kinetically by the Boltzmann equation with the Krook collision term. Appropriate normalizations in the near and far fields lead to a perturbation solution of the problem, expanded in terms of the ratio of body diameter to mean free path (inverse Knudsen number). The distribution function is found directly in each region, and intermediate matching is demonstrated. The heat transfer from the sphere is then calculated as an integral over this distribution function in the inner region. Final results indicate that the heat transfer may at first increase over its free flow value before falling to the continuum level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cosmic-ray positron and negatron spectra between 11 and 204 MeV have been measured in a series of 3 high-altitude balloon flights launched from Fort Churchill, Manitoba, on July 16, July 21, and July 29, 1968. The detector system consisted of a magnetic spectrometer utilizing a 1000-gauss permanent magnet, scintillation counters, and a lucite Čerenkov counter.

Launches were timed so that the ascent through the 100 g/cm2 level of residual atmosphere occurred after the evening geomagnetic cutoff transition. Data gathered during ascent are used to correct for the contribution of atmospheric secondary electrons to the flux measured at float altitude. All flights floated near 2.4 g/cm2.

A pronounced morning intensity increase was observed in each flight. We present daytime positron and negatron data which support the interpretation of the diurnal flux variation as a change in the local geomagnetic cutoff. A large diurnal variation was observed in the count rate of positrons and negatrons with magnetic rigidities less than 11 MV and is evidence that the nighttime cutoff was well below this value.

Using nighttime data we derive extraterrestrial positron and negatron spectra. The positron-to-total-electron ratio which we measure indicates that the interstellar secondary, or collision, source contributes ≾50 percent of the electron flux within this energy interval. By comparing our measured positron spectrum with the positron spectrum calculated for the collision source we derive the absolute solar modulation for positrons in 1968. Assuming negligible energy loss during modulation, we derive the total interstellar electron spectrum as well as the spectrum of directly accelerated, or primary, electrons. We examine the effect of adiabatic deceleration and find that many of the conclusions regarding the interstellar electron spectrum are not significantly altered for an assumed energy loss of up to 50 percent of the original energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let E be a compact subset of the n-dimensional unit cube, 1n, and let C be a collection of convex bodies, all of positive n-dimensional Lebesgue measure, such that C contains bodies with arbitrarily small measure. The dimension of E with respect to the covering class C is defined to be the number

dC(E) = sup(β:Hβ, C(E) > 0),

where Hβ, C is the outer measure

inf(Ʃm(Ci)β:UCi E, Ci ϵ C) .

Only the one and two-dimensional cases are studied. Moreover, the covering classes considered are those consisting of intervals and rectangles, parallel to the coordinate axes, and those closed under translations. A covering class is identified with a set of points in the left-open portion, 1’n, of 1n, whose closure intersects 1n - 1’n. For n = 2, the outer measure Hβ, C is adopted in place of the usual:

Inf(Ʃ(diam. (Ci))β: UCi E, Ci ϵ C),

for the purpose of studying the influence of the shape of the covering sets on the dimension dC(E).

If E is a closed set in 11, let M(E) be the class of all non-decreasing functions μ(x), supported on E with μ(x) = 0, x ≤ 0 and μ(x) = 1, x ≥ 1. Define for each μ ϵ M(E),

dC(μ) = lim/c → inf/0 log ∆μ(c)/log c , (c ϵ C)

where ∆μ(c) = v/x (μ(x+c) – μ(x)). It is shown that

dC(E) = sup (dC(μ):μ ϵ M(E)).

This notion of dimension is extended to a certain class Ӻ of sub-additive functions, and the problem of studying the behavior of dC(E) as a function of the covering class C is reduced to the study of dC(f) where f ϵ Ӻ. Specifically, the set of points in 11,

(*) {dB(F), dC(f)): f ϵ Ӻ}

is characterized by a comparison of the relative positions of the points of B and C. A region of the form (*) is always closed and doubly-starred with respect to the points (0, 0) and (1, 1). Conversely, given any closed region in 12, doubly-starred with respect to (0, 0) and (1, 1), there are covering classes B and C such that (*) is exactly that region. All of the results are shown to apply to the dimension of closed sets E. Similar results can be obtained when a finite number of covering classes are considered.

In two dimensions, the notion of dimension is extended to the class M, of functions f(x, y), non-decreasing in x and y, supported on 12 with f(x, y) = 0 for x · y = 0 and f(1, 1) = 1, by the formula

dC(f) = lim/s · t → inf/0 log ∆f(s, t)/log s · t , (s, t) ϵ C

where

∆f(s, t) = V/x, y (f(x+s, y+t) – f(x+s, y) – f(x, y+t) + f(x, t)).

A characterization of the equivalence dC1(f) = dC2(f) for all f ϵ M, is given by comparison of the gaps in the sets of products s · t and quotients s/t, (s, t) ϵ Ci (I = 1, 2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let {Ƶn}n = -∞ be a stochastic process with state space S1 = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions

Qi(i(0)) = Ƥ(Ƶn = i | Ƶn - 1 = i (0)1, Ƶn - 2 = i (0)2, …) (i ɛ S1), where i(0) = (i(0)1, i(0)2, …) ranges over infinite sequences from S1. If i(n) = (i(n)1, i(n)2, …) for n = 1, 2,…, then i(n) → i(0) means that for each k, i(n)k = i(0)k for all n sufficiently large.

Given functions Qi(i(0)) such that

(i) 0 ≤ Qi(i(0) ≤ ξ ˂ 1

(ii)D – 1/Ʃ/i = 0 Qi(i(0)) Ξ 1

(iii) Qi(i(n)) → Qi(i(0)) whenever i(n) → i(0),

we prove the existence of a stationary chain of infinite order {Ƶn} whose transitions are given by

Ƥ (Ƶn = i | Ƶn - 1, Ƶn - 2, …) = Qin - 1, Ƶn - 2, …)

With probability 1. The method also yields stationary chains {Ƶn} for which (iii) does not hold but whose transition probabilities are, in a sense, “locally Markovian.” These and similar results extend a paper by T.E. Harris [Pac. J. Math., 5 (1955), 707-724].

Included is a new proof of the existence and uniqueness of a stationary absolute distribution for an Nth order Markov chain in which all transitions are possible. This proof allows us to achieve our main results without the use of limit theorem techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and theoretical studies have been made of the electrothermal waves occurring in a nonequilibrium MHD plasma. These waves are caused by an instability that occurs when a plasma having a dependence of conductivity on current density is subjected to crossed electric and magnetic fields. Theoretically, these waves were studied by developing and solving the equations of a steady, one-dimensional nonuniformity in electron density. From these nonlinear equations, predictions of the maximum amplitude and of the half width of steady waves could be obtained. Experimentally, the waves were studied in a nonequilibrium discharge produced in a potassium-seeded argon plasma at 2000°K and 1 atm. pressure. The behavior of such a discharge with four different configurations of electrodes was determined from photographs, photomultiplier measurements, and voltage probes. These four configurations were chosen to produce steady waves, to check the stability of steady waves, and to observe the manifestation of the waves in a MHD generator or accelerator configuration.

Steady, one-dimensional waves were found to exist in a number of situations, and where they existed, their characteristics agreed with the predictions of the steady theory. Some extensions of this theory were necessary, however, to describe the transient phenomena occurring in the inlet region of a discharge transverse to the gas flow. It was also found that in a discharge away from the stabilizing effect of the electrodes, steady waves became unstable for large Hall parameters. Methods of prediction of the effective electrical conductivity and Hall parameter of a plasma with nonuniformities caused by the electrothermal waves were also studied. Using these methods and the values of amplitude predicted by the steady theory, it was found that the measured decrease in transverse conductivity of a MHD device, 50 per cent at a Hall parameter of 5, could be accounted for in terms of the electrothermal instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. The binding of the intercalating dye ethidium bromide to closed circular SV 40 DNA causes an unwinding of the duplex structure and a simultaneous and quantitatively equivalent unwinding of the superhelices. The buoyant densities and sedimentation velocities of both intact (I) and singly nicked (II) SV 40 DNAs were measured as a function of free dye concentration. The buoyant density data were used to determine the binding isotherms over a dye concentration range extending from 0 to 600 µg/m1 in 5.8 M CsCl. At high dye concentrations all of the binding sites in II, but not in I, are saturated. At free dye concentrations less than 5.4 µg/ml, I has a greater affinity for dye than II. At a critical amount of dye bound I and II have equal affinities, and at higher dye concentration I has a lower affinity than II. The number of superhelical turns, τ, present in I is calculated at each dye concentration using Fuller and Waring's (1964) estimate of the angle of duplex unwinding per intercalation. The results reveal that SV 40 DNA I contains about -13 superhelical turns in concentrated salt solutions.

The free energy of superhelix formation is calculated as a function of τ from a consideration of the effect of the superhelical turns upon the binding isotherm of ethidium bromide to SV 40 DNA I. The value of the free energy is about 100 kcal/mole DNA in the native molecule. The free energy estimates are used to calculate the pitch and radius of the superhelix as a function of the number of superhelical turns. The pitch and radius of the native I superhelix are 430 Å and 135 Å, respectively.

A buoyant density method for the isolation and detection of closed circular DNA is described. The method is based upon the reduced binding of the intercalating dye, ethidium bromide, by closed circular DNA. In an application of this method it is found that HeLa cells contain in addition to closed circular mitochondrial DNA of mean length 4.81 microns, a heterogeneous group of smaller DNA molecules which vary in size from 0.2 to 3.5 microns and a paucidisperse group of multiples of the mitochondrial length.

II. The general theory is presented for the sedimentation equilibrium of a macromolecule in a concentrated binary solvent in the presence of an additional reacting small molecule. Equations are derived for the calculation of the buoyant density of the complex and for the determination of the binding isotherm of the reagent to the macrospecies. The standard buoyant density, a thermodynamic function, is defined and the density gradients which characterize the four component system are derived. The theory is applied to the specific cases of the binding of ethidium bromide to SV 40 DNA and of the binding of mercury and silver to DNA.