3 resultados para Kalsey, Jack
em CaltechTHESIS
Resumo:
This thesis is comprised of three chapters, each of which is concerned with properties of allocational mechanisms which include voting procedures as part of their operation. The theme of interaction between economic and political forces recurs in the three chapters, as described below.
Chapter One demonstrates existence of a non-controlling interest shareholders' equilibrium for a stylized one-period stock market economy with fewer securities than states of the world. The economy has two decision mechanisms: Owners vote to change firms' production plans across states, fixing shareholdings; and individuals trade shares and the current production / consumption good, fixing production plans. A shareholders' equilibrium is a production plan profile, and a shares / current good allocation stable for both mechanisms. In equilibrium, no (Kramer direction-restricted) plan revision is supported by a share-weighted majority, and there exists no Pareto superior reallocation.
Chapter Two addresses efficient management of stationary-site, fixed-budget, partisan voter registration drives. Sufficient conditions obtain for unique optimal registrar deployment within contested districts. Each census tract is assigned an expected net plurality return to registration investment index, computed from estimates of registration, partisanship, and turnout. Optimum registration intensity is a logarithmic transformation of a tract's index. These conditions are tested using a merged data set including both census variables and Los Angeles County Registrar data from several 1984 Assembly registration drives. Marginal registration spending benefits, registrar compensation, and the general campaign problem are also discussed.
The last chapter considers social decision procedures at a higher level of abstraction. Chapter Three analyzes the structure of decisive coalition families, given a quasitransitive-valued social decision procedure satisfying the universal domain and ITA axioms. By identifying those alternatives X* ⊆ X on which the Pareto principle fails, imposition in the social ranking is characterized. Every coaliton is weakly decisive for X* over X~X*, and weakly antidecisive for X~X* over X*; therefore, alternatives in X~X* are never socially ranked above X*. Repeated filtering of alternatives causing Pareto failure shows states in X^n*~X^((n+1))* are never socially ranked above X^((n+1))*. Limiting results of iterated application of the *-operator are also discussed.
Resumo:
Techniques are described for mounting and visualizing biological macromolecules for high resolution electron microscopy. Standard techniques are included in a discussion of new methods designed to provide the highest structural resolution. Methods are also discussed for handling samples on the grid, for making accurate size measurements at the 20 Å level, and for photographically enhancing image contrast.
The application of these techniques to the study of the binding of DNA polymerase to DNA is described. It is shown that the electron micrographs of this material are in agreement with the model proposed by Dr. Arthur Kornberg. A model is described which locates several active sites on the enzyme.
The chromosomal material of the protozoan tetrahymena has been isolated and characterized by biochemical techniques and by electron microscopy. This material is shown to be typical of chromatin of higher creatures.
Comparison with other chromatins discloses that the genome of tetrahymena is highly template active and has a relatively simple genetic construction.
High resolution electron microscope procedures developed in this work have been combined with standard biochemical techniques to give a comprehensive picture of the structure of interphase chromosome fibers. The distribution of the chromosomal proteins along its DNA is discussed.
Resumo:
Let {Ƶn}∞n = -∞ be a stochastic process with state space S1 = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions
Qi(i(0)) = Ƥ(Ƶn = i | Ƶn - 1 = i (0)1, Ƶn - 2 = i (0)2, …) (i ɛ S1), where i(0) = (i(0)1, i(0)2, …) ranges over infinite sequences from S1. If i(n) = (i(n)1, i(n)2, …) for n = 1, 2,…, then i(n) → i(0) means that for each k, i(n)k = i(0)k for all n sufficiently large.
Given functions Qi(i(0)) such that
(i) 0 ≤ Qi(i(0) ≤ ξ ˂ 1
(ii)D – 1/Ʃ/i = 0 Qi(i(0)) Ξ 1
(iii) Qi(i(n)) → Qi(i(0)) whenever i(n) → i(0),
we prove the existence of a stationary chain of infinite order {Ƶn} whose transitions are given by
Ƥ (Ƶn = i | Ƶn - 1, Ƶn - 2, …) = Qi(Ƶn - 1, Ƶn - 2, …)
With probability 1. The method also yields stationary chains {Ƶn} for which (iii) does not hold but whose transition probabilities are, in a sense, “locally Markovian.” These and similar results extend a paper by T.E. Harris [Pac. J. Math., 5 (1955), 707-724].
Included is a new proof of the existence and uniqueness of a stationary absolute distribution for an Nth order Markov chain in which all transitions are possible. This proof allows us to achieve our main results without the use of limit theorem techniques.