3 resultados para Introduced Species
em CaltechTHESIS
Resumo:
Chlorine oxide species have received considerable attention in recent years due to their central role in the balance of stratospheric ozone. Many questions pertaining to the behavior of such species still remain unanswered and plague the ability of researchers to develop accurate chemical models of the stratosphere. Presented in this thesis are three experiments that study various properties of some specific chlorine oxide species.
In the first chapter, the reaction between ClONO_2 and protonated water clusters is investigated to elucidate a possible reaction mechanism for the heterogeneous reaction of chlorine nitrate on ice. The ionic products were various forms of protonated nitric acid, NO_2 +(H_20)_m, m = 0, 1, 2. These products are analogous to products previously reported in the literature for the neutral reaction occurring on ice surfaces. Our results support the hypothesis that the heterogeneous reaction is acid-catalyzed.
In the second chapter, the photochemistry of ClONO_2 was investigated at two wavelengths, 193 and 248 nm, using the technique of photofragmentation translational spectroscopy. At both wavelengths, the predominant dissociation pathways were Cl + NO_3 and ClO + NO_2. Channel assignments were confirmed by momentum matching the counterfragments from each channel. A one-dimensional stratospheric model using the new 248 nm branching ratio determined how our results would affect the predicted Cl_x and NO_x partitioning in the stratosphere.
Chapter three explores the photodissociation dynamics of Cl_2O at 193, 248 and 308 nm. At 193 nm, we found evidence for the concerted reaction channel, Cl_2 + O. The ClO + Cl channel was also accessed, however, the majority of the ClO fragments were formed with sufficient internal energies for spontaneous secondary dissociation to occur. At 248 and 308 nm, we only observed only the ClO + Cl channel. . Some of the ClO formed at 248 nm was formed internally hot and spontaneously dissociated. Bimodal translational energy distributions of the ClO and Cl products indicate two pathways leading to the same product exist.
Appendix A, B and C discuss the details of data analysis techniques used in Chapters 1 and 2. The development of a molecular beam source of ClO dimer is presented in Appendix D.
Resumo:
Oxygenic photosynthesis fundamentally transformed our planet by releasing molecular oxygen and altering major biogeochemical cycles, and this exceptional metabolism relies on a redox-active cubane cluster of four manganese atoms. Not only is manganese essential for producing oxygen, but manganese is also only oxidized by oxygen and oxygen-derived species. Thus the history of manganese oxidation provides a valuable perspective on our planet’s environmental past, the ancient availability of oxygen, and the evolution of oxygenic photosynthesis. Broadly, the general trends of the geologic record of manganese deposition is a chronicle of ancient manganese oxidation: manganese is introduced into the fluid Earth as Mn(II) and it will remain only a trace component in sedimentary rocks until it is oxidized, forming Mn(III,IV) insoluble precipitates that are concentrated in the rock record. Because these manganese oxides are highly favorable electron acceptors, they often undergo reduction in sediments through anaerobic respiration and abiotic reaction pathways.
The following dissertation presents five chapters investigating manganese cycling both by examining ancient examples of manganese enrichments in the geologic record and exploring the mineralogical products of various pathways of manganese oxide reduction that may occur in sediments. The first chapter explores the mineralogical record of manganese and reports abundant manganese reduction recorded in six representative manganese-enriched sedimentary sequences. This is followed by a second chapter that further analyzes the earliest significant manganese deposit 2.4 billon years ago, and determines that it predated the origin of oxygenic photosynthesis and thus is supporting evidence for manganese-oxidizing photosynthesis as an evolutionary precursor prior to oxygenic photosynthesis. The lack of oxygen during this early manganese deposition was partially established using oxygen-sensitive detrital grains, and so a third chapter delves into what these grains mean for oxygen constraints using a mathematical model. The fourth chapter returns to processes affecting manganese post-deposition, and explores the relationships between manganese mineral products and (bio)geochemical reduction processes to understand how various manganese minerals can reveal ancient environmental conditions and biological metabolisms. Finally, a fifth chapter considers whether manganese can be mobilized and enriched in sedimentary rocks and determines that manganese was concentrated secondarily in a 2.5 billion-year-old example from South Africa. Overall, this thesis demonstrates how microbial processes, namely photosynthesis and metal oxide-reducing metabolisms, are linked to and recorded in the rich complexity of the manganese mineralogical record.
Resumo:
This thesis describes applications of cavity enhanced spectroscopy towards applications of remote sensing, chemical kinetics and detection of transient radical molecular species. Both direct absorption spectroscopy and cavity ring-down spectroscopy are used in this work. Frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) was utilized for measurements of spectral lineshapes of O2 and CO2 for obtaining laboratory reference data in support of NASA’s OCO-2 mission. FS-CRDS is highly sensitive (> 10 km absorption path length) and precise (> 10000:1 SNR), making it ideal to study subtle non-Voigt lineshape effects. In addition, these advantages of FS-CRDS were further extended for measuring kinetic isotope effects: A dual-wavelength variation of FS-CRDS was used for measuring precise D/H and 13C/12C methane isotope ratios (sigma>0.026%) for the purpose of measuring the temperature dependent kinetic isotope effects of methane oxidation with O(1D) and OH radicals. Finally, direct absorption spectroscopic detection of the trans-DOCO radical via a frequency combs spectrometer was conducted in collaboration with professor Jun Ye at JILA/University of Colorado.