1 resultado para Intrinsic subspace convergence
em CaltechTHESIS
Filtro por publicador
- Aberdeen University (4)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (53)
- Aston University Research Archive (36)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (77)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (56)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (16)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (93)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (14)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (67)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- eScholarship Repository - University of California (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (3)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (4)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (4)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (40)
- Open Access Repository of Indian Theses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório da Produção Científica e Intelectual da Unicamp (24)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (12)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (43)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (12)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (18)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (51)
- Université de Montréal (3)
- Université de Montréal, Canada (34)
- University of Connecticut - USA (2)
- University of Michigan (8)
- University of Queensland eSpace - Australia (59)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In this work, we further extend the recently developed adaptive data analysis method, the Sparse Time-Frequency Representation (STFR) method. This method is based on the assumption that many physical signals inherently contain AM-FM representations. We propose a sparse optimization method to extract the AM-FM representations of such signals. We prove the convergence of the method for periodic signals under certain assumptions and provide practical algorithms specifically for the non-periodic STFR, which extends the method to tackle problems that former STFR methods could not handle, including stability to noise and non-periodic data analysis. This is a significant improvement since many adaptive and non-adaptive signal processing methods are not fully capable of handling non-periodic signals. Moreover, we propose a new STFR algorithm to study intrawave signals with strong frequency modulation and analyze the convergence of this new algorithm for periodic signals. Such signals have previously remained a bottleneck for all signal processing methods. Furthermore, we propose a modified version of STFR that facilitates the extraction of intrawaves that have overlaping frequency content. We show that the STFR methods can be applied to the realm of dynamical systems and cardiovascular signals. In particular, we present a simplified and modified version of the STFR algorithm that is potentially useful for the diagnosis of some cardiovascular diseases. We further explain some preliminary work on the nature of Intrinsic Mode Functions (IMFs) and how they can have different representations in different phase coordinates. This analysis shows that the uncertainty principle is fundamental to all oscillating signals.