7 resultados para Interferometry

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used the technique of non-redundant masking at the Palomar 200-inch telescope and radio VLBI imaging software to make optical aperture synthesis maps of two binary stars, β Corona Borealis and σ Herculis. The dynamic range of the map of β CrB, a binary star with a separation of 230 milliarcseconds is 50:1. For σ Her, we find a separation of 70 milliarcseconds and the dynamic range of our image is 30:1. These demonstrate the potential of the non-redundant masking technique for diffraction-limited imaging of astronomical objects with high dynamic range.

We find that the optimal integration time for measuring the closure phase is longer than that for measuring the fringe amplitude. There is not a close relationship between amplitude errors and phase errors, as is found in radio interferometry. Amplitude self calibration is less effective at optical wavelengths than at radio wavelengths. Primary beam sensitivity correction made in radio aperture synthesis is not necessary in optical aperture synthesis.

The effects of atmospheric disturbances on optical aperture synthesis have been studied by Monte Carlo simulations based on the Kolmogorov theory of refractive-index fluctuations. For the non-redundant masking with τ_c-sized apertures, the simulated fringe amplitude gives an upper bound of the observed fringe amplitude. A smooth transition is seen from the non-redundant masking regime to the speckle regime with increasing aperture size. The fractional reduction of the fringe amplitude according to the bandwidth is nearly independent of the aperture size. The limiting magnitude of optical aperture synthesis with τ_c-sized apertures and that with apertures larger than τ_c are derived.

Monte Carlo simulations are also made to study the sensitivity and resolution of the bispectral analysis of speckle interferometry. We present the bispectral modulation transfer function and its signal-to-noise ratio at high light levels. The results confirm the validity of the heuristic interferometric view of image-forming process in the mid-spatial-frequency range. The signal-to- noise ratio of the bispectrum at arbitrary light levels is derived in the mid-spatial-frequency range.

The non-redundant masking technique is suitable for imaging bright objects with high resolution and high dynamic range, while the faintest limit will be better pursued by speckle imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of seismogenic asperities and aseismic barriers has become a useful paradigm within which to understand the seismogenic behavior of major faults. Since asperities and barriers can be thought of as defining the potential rupture area of large megathrust earthquakes, it is thus important to identify their respective spatial extents, constrain their temporal longevity, and to develop a physical understanding for their behavior. Space geodesy is making critical contributions to the identification of slip asperities and barriers but progress in many geographical regions depends on improving the accuracy and precision of the basic measurements. This thesis begins with technical developments aimed at improving satellite radar interferometric measurements of ground deformation whereby we introduce an empirical correction algorithm for unwanted effects due to interferometric path delays that are due to spatially and temporally variable radar wave propagation speeds in the atmosphere. In chapter 2, I combine geodetic datasets with complementary spatio-temporal resolutions to improve our understanding of the spatial distribution of crustal deformation sources and their associated temporal evolution – here we use observations from Long Valley Caldera (California) as our test bed. In the third chapter I apply the tools developed in the first two chapters to analyze postseismic deformation associated with the 2010 Mw=8.8 Maule (Chile) earthquake. The result delimits patches where afterslip occurs, explores their relationship to coseismic rupture, quantifies frictional properties associated with inferred patches of afterslip, and discusses the relationship of asperities and barriers to long-term topography. The final chapter investigates interseismic deformation of the eastern Makran subduction zone by using satellite radar interferometry only, and demonstrates that with state-of-art techniques it is possible to quantify tectonic signals with small amplitude and long wavelength. Portions of the eastern Makran for which we estimate low fault coupling correspond to areas where bathymetric features on the downgoing plate are presently subducting, whereas the region of the 1945 M=8.1 earthquake appears to be more highly coupled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sources and effects of astrophysical gravitational radiation are explained briefly to motivate discussion of the Caltech 40 meter antenna, which employs laser interferometry to monitor proper distances between inertial test masses. Practical considerations in construction of the apparatus are described. Redesign of test mass systems has resulted in a reduction of noise from internal mass vibrations by up to two orders of magnitude at some frequencies. A laser frequency stabilization system was developed which corrects the frequency of an argon ion laser to a residual fluctuation level bounded by the spectral density √s_v(f) ≤ 60µHz/√Hz, at fluctuation frequencies near 1.2 kHz. These and other improvements have contributed to reducing the spectral density of equivalent gravitational wave strain noise to √s_h(f)≈10^(-19)/√ Hz at these frequencies.

Finally, observations made with the antenna in February and March of 1987 are described. Kilohertz-band gravitational waves produced by the remnant of the recent supernova are shown to be theoretically unlikely at the strength required for confident detection in this antenna (then operating at poorer sensitivity than that quoted above). A search for periodic waves in the recorded data, comprising Fourier analysis of four 105-second samples of the antenna strain signal, was used to place new upper limits on periodic gravitational radiation at frequencies between 305 Hz and 5 kHz. In particular, continuous waves of any polarization are ruled out above strain amplitudes of 1.2 x 10^(-18) R.M.S. for waves emanating from the direction of the supernova, and 6.2 x 10^(-19) R.M.S. for waves emanating from the galactic center, between 1.5 and 4 kilohertz. Between 305 Hz and 5kHz no strains greater than 1.2 x 10^(-17) R.M.S. were detected from either direction. Limitations of the analysis and potential improvements are discussed, as are prospects for future searches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of the strength of a material is relevant to a variety of applications including automobile collisions, armor penetration and inertial confinement fusion. Although dynamic behavior of materials at high pressures and strain-rates has been studied extensively using plate impact experiments, the results provide measurements in one direction only. Material behavior that is dependent on strength is unaccounted for. The research in this study proposes two novel configurations to mitigate this problem.

The first configuration introduced is the oblique wedge experiment, which is comprised of a driver material, an angled target of interest and a backing material used to measure in-situ velocities. Upon impact, a shock wave is generated in the driver material. As the shock encounters the angled target, it is reflected back into the driver and transmitted into the target. Due to the angle of obliquity of the incident wave, a transverse wave is generated that allows the target to be subjected to shear while being compressed by the initial longitudinal shock such that the material does not slip. Using numerical simulations, this study shows that a variety of oblique wedge configurations can be used to study the shear response of materials and this can be extended to strength measurement as well. Experiments were performed on an oblique wedge setup with a copper impactor, polymethylmethacrylate driver, aluminum 6061-t6 target, and a lithium fluoride window. Particle velocities were measured using laser interferometry and results agree well with the simulations.

The second novel configuration is the y-cut quartz sandwich design, which uses the anisotropic properties of y-cut quartz to generate a shear wave that is transmitted into a thin sample. By using an anvil material to back the thin sample, particle velocities measured at the rear surface of the backing plate can be implemented to calculate the shear stress in the material and subsequently the strength. Numerical simulations were conducted to show that this configuration has the ability to measure the strength for a variety of materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.

The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.

The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.

An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advent of the laser in the year 1960, the field of optics experienced a renaissance from what was considered to be a dull, solved subject to an active area of development, with applications and discoveries which are yet to be exhausted 55 years later. Light is now nearly ubiquitous not only in cutting-edge research in physics, chemistry, and biology, but also in modern technology and infrastructure. One quality of light, that of the imparted radiation pressure force upon reflection from an object, has attracted intense interest from researchers seeking to precisely monitor and control the motional degrees of freedom of an object using light. These optomechanical interactions have inspired myriad proposals, ranging from quantum memories and transducers in quantum information networks to precision metrology of classical forces. Alongside advances in micro- and nano-fabrication, the burgeoning field of optomechanics has yielded a class of highly engineered systems designed to produce strong interactions between light and motion.

Optomechanical crystals are one such system in which the patterning of periodic holes in thin dielectric films traps both light and sound waves to a micro-scale volume. These devices feature strong radiation pressure coupling between high-quality optical cavity modes and internal nanomechanical resonances. Whether for applications in the quantum or classical domain, the utility of optomechanical crystals hinges on the degree to which light radiating from the device, having interacted with mechanical motion, can be collected and detected in an experimental apparatus consisting of conventional optical components such as lenses and optical fibers. While several efficient methods of optical coupling exist to meet this task, most are unsuitable for the cryogenic or vacuum integration required for many applications. The first portion of this dissertation will detail the development of robust and efficient methods of optically coupling optomechanical resonators to optical fibers, with an emphasis on fabrication processes and optical characterization.

I will then proceed to describe a few experiments enabled by the fiber couplers. The first studies the performance of an optomechanical resonator as a precise sensor for continuous position measurement. The sensitivity of the measurement, limited by the detection efficiency of intracavity photons, is compared to the standard quantum limit imposed by the quantum properties of the laser probe light. The added noise of the measurement is seen to fall within a factor of 3 of the standard quantum limit, representing an order of magnitude improvement over previous experiments utilizing optomechanical crystals, and matching the performance of similar measurements in the microwave domain.

The next experiment uses single photon counting to detect individual phonon emission and absorption events within the nanomechanical oscillator. The scattering of laser light from mechanical motion produces correlated photon-phonon pairs, and detection of the emitted photon corresponds to an effective phonon counting scheme. In the process of scattering, the coherence properties of the mechanical oscillation are mapped onto the reflected light. Intensity interferometry of the reflected light then allows measurement of the temporal coherence of the acoustic field. These correlations are measured for a range of experimental conditions, including the optomechanical amplification of the mechanics to a self-oscillation regime, and comparisons are drawn to a laser system for phonons. Finally, prospects for using phonon counting and intensity interferometry to produce non-classical mechanical states are detailed following recent proposals in literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, I develop the velocity and structure models for the Los Angeles Basin and Southern Peru. The ultimate goal is to better understand the geological processes involved in the basin and subduction zone dynamics. The results are obtained from seismic interferometry using ambient noise and receiver functions using earthquake- generated waves. Some unusual signals specific to the local structures are also studied. The main findings are summarized as follows:

(1) Los Angeles Basin

The shear wave velocities range from 0.5 to 3.0 km/s in the sediments, with lateral gradients at the Newport-Inglewood, Compton-Los Alamitos, and Whittier Faults. The basin is a maximum of 8 km deep along the profile, and the Moho rises to a depth of 17 km under the basin. The basin has a stretch factor of 2.6 in the center decreasing to 1.3 at the edges, and is in approximate isostatic equilibrium. This "high-density" (~1 km spacing) "short-duration" (~1.5 month) experiment may serve as a prototype experiment that will allow basins to be covered by this type of low-cost survey.

(2) Peruvian subduction zone

Two prominent mid-crust structures are revealed in the 70 km thick crust under the Central Andes: a low-velocity zone interpreted as partially molten rocks beneath the Western Cordillera – Altiplano Plateau, and the underthrusting Brazilian Shield beneath the Eastern Cordillera. The low-velocity zone is oblique to the present trench, and possibly indicates the location of the volcanic arcs formed during the steepening of the Oligocene flat slab beneath the Altiplano Plateau.

The Nazca slab changes from normal dipping (~25 degrees) subduction in the southeast to flat subduction in the northwest of the study area. In the flat subduction regime, the slab subducts to ~100 km depth and then remains flat for ~300 km distance before it resumes a normal dipping geometry. The flat part closely follows the topography of the continental Moho above, indicating a strong suction force between the slab and the overriding plate. A high-velocity mantle wedge exists above the western half of the flat slab, which indicates the lack of melting and thus explains the cessation of the volcanism above. The velocity turns to normal values before the slab steepens again, indicating possible resumption of dehydration and ecologitization.

(3) Some unusual signals

Strong higher-mode Rayleigh waves due to the basin structure are observed in the periods less than 5 s. The particle motions provide a good test for distinguishing between the fundamental and higher mode. The precursor and coda waves relative to the interstation Rayleigh waves are observed, and modeled with a strong scatterer located in the active volcanic area in Southern Peru. In contrast with the usual receiver function analysis, multiples are extensively involved in this thesis. In the LA Basin, a good image is only from PpPs multiples, while in Peru, PpPp multiples contribute significantly to the final results.